NEW GOLD RAINY RIVER MINE APPENDIX G 2023 VEGETATION TRIAL SUMMARY MEMO

Rainy River Mine -2023 Vegetation Trial Summary

January 12, 2024

Rainy River Mine - 2023 Vegetation Trial Summary

B-1003-228-004

January 2024

Prepared for:

New Gold Inc. 5967 Highway 11/71, P.O. Box 5 Emo, Ontario POW 1E0

Prepared by:

Scott Prodahl
Reclamation and Revegetation Specialist
sprodahl@okaneconsultants.com

M.A. O'Kane Consultants Inc.

Suite 1900, 736 6th Avenue SW Calgary, AB T2P 3T7 Canada

Telephone: (587) 583 5741 **Web:** www.okc-sk.com

Rev. #	Status	Rev. Date	Author	Reviewer Sign-off	Major Changes
0	DRAFT	January 2024	SP/TM	GA	
1	DRAFT	January 2024	SP/TM	GA	

DISCLAIMER

This document has been provided by M.A. O'Kane Consultants Inc. (Okane) subject to the following limitations:

- 1. This document has been prepared for the client and for the particular purpose outlined in the Okane proposal and no responsibility is accepted for the use of this document, in whole or in part, in any other contexts or for any other purposes.
- 2. The scope and the period of operation of the Okane services are described in the Okane proposal and are subject to certain restrictions and limitations set out in the Okane proposal.
- 3. Okane did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referred to in the Okane proposal. If a service is not expressly indicated, the client should not assume it has been provided. If a matter is not addressed, the client should not assume that any determination has been made by Okane in regards to that matter.
- 4. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation, or information provided by the client or a third party and which have not therefore been taken into account in this document.
- 5. The passage of time will affect the information and assessment provided in this document. The opinions expressed in this document are based on information that existed at the time of the production of this document.
- 6. The investigations undertaken and services provided by Okane allowed Okane to form no more than an opinion of the actual conditions of the site at the time the site referred to in the Okane proposal was visited and the proposal developed and those investigations and services cannot be used to assess the effect of any subsequent changes in the conditions at the site, or its surroundings, or any subsequent changes in the relevant laws or regulations.
- 7. The assessments made in this document are based on the conditions indicated from published sources and the investigation and information provided. No warranty is included, either express or implied that the actual conditions will conform exactly to the assessments contained in this document.
- 8. Where data supplied by the client or third parties, including previous site investigation data, has been used, it has been assumed that the information is correct. No responsibility is accepted by Okane for the completeness or accuracy of the data supplied by the client or third parties.
- 9. This document is provided solely for use by the client and must be considered to be confidential information. The client agrees not to use, copy, disclose reproduce or make public this document, its contents, or the Okane proposal without the written consent of Okane.
- 10. Okane accepts no responsibility whatsoever to any party, other than the client, for the use of this document or the information or assessments contained in this document. Any use which a third party makes of this document or the information or assessments contained therein, or any reliance on or decisions made based on this document or the information or assessments contained therein, is the responsibility of that third party.
- 11. No section or element of this document may be removed from this document, extracted, reproduced, electronically stored or transmitted in any form without the prior written permission of Okane.

EXECUTIVE SUMMARY

New Gold Inc. (New Gold) established a vegetation trial at the Rainy River Mine (RRM) to investigate the performance of locally common species with operationally feasible cover system configurations. It is anticipated that learnings from the trial will serve to inform the closure plan, and that this work will contribute to New Gold's commitment to demonstrate to government regulators and community stakeholders that vegetation can be re-established during progressive reclamation and closure.

The vegetation trial is designed as a randomized block study and is situated on the plateau of a dedicated trial area. Slopes surrounding the block study have been seeded with various methods and are used to qualitatively evaluate operational seeding techniques, vegetation establishment, and erosion. Construction at the trial was completed in September 2019, and many of the plots were planted in late October 2019. Hydroseeding of the slopes was completed in the Fall of 2020. The purpose of this memorandum is to summarize monitoring activities completed by Okane Consultants (Okane) in 2023, document baseline conditions observed, and provide a set of recommendations based off the conditions observed.

Sloped Areas

In 2023 no active erosion was observed, apart from a gully on one section of the south slope.

The historical erosion features from previous years were difficult to identify in 2023 due to dense vegetative ground coverage, all sloped areas had 100% vegetative ground coverage, except for a portion of the south slope which had 75% cover.

Species composition was comparable across the four different slopes, with Birdsfoot Trefoil, Sweet Clover, Canada Wild Rye, and Virginia Wild Rye representing the dominant species. Birdsfoot Trefoil and Sweet Clover are not native, and their dominance indicates sloped areas are highly prone to weed infestations that outcompete desirable species. On sloped areas where hydroseeding was conducted early, desirable graminoid species such as Canada Wild Rye, and Virginia Wild Rye were quick to establish and weed infestations have been slower to develop. Minor species observed across all slopes were a mixture of hydroseeded grasses, volunteer native species, undesirable weeds, and noxious weeds.

Plateau Plots

Overall, in 2023 the general health of the planted tree species in plots appeared to be comparable to previous years. Black Spruce, White Spruce, Eastern White Cedar, and Jack Pine are the least successful tree species with higher stress levels and mortality and less growth compared to Aspen, Birch, Pincherry, High Bush Cranberry, Willow, and Dogwood. Aspen, Birch, Pincherry, High Bush Cranberry, Willow, and Dogwood may prove to be ideal for widespread use in large scale reclamation across a variety of topographical settings at RRM. White Spruce may also prove to be ideal in reclamation if planted earlier in the spring.

Okane Consultants January 12, 2024 B-1003-228-004

Beginning in 2023, noxious weed density distribution was documented in most plots and noxious weeds were observed to densely populate most plots. Generally, plots with thin topsoil and tilled topsoil, regardless of vegetation type, had a higher density distribution than plots with fertilized overburden or control (overburden) soil. Community plots where no species appeared to have been planted often had a comparatively higher density distribution of noxious weeds compared to other vegetation treatments.

Plant available nutrients, organic parameters, and salinity parameters were measured in each of the soil treatments in all three blocks in 2023. Based on the analytical results, tree mortality appears to be unaffected by nutrient and organic matter and carbon concentrations in the immediate or short-term. The use of topsoil as a growth media appears to be highly beneficial to the establishment of herbaceous ground cover over the immediate and/or short-term but less so for trees and shrubs which generally had higher growth in fertilized and unfertilized overburden. Vegetation is not being impacted by salinity related issues and all soil treatments are considered suitable as a growth media with respect to salinity.

Destructive Plot

Minimal erosion was observed in the destructive plot, except for some down-slope erosion on the north edge of the plot. Vegetation was generally noted to be well established, with increases in vegetative ground coverage from 75% in 2020 to 100% in 2023.

Rooting depth did not extend into the compacted clay layer and remained within the overlying overburden.

Recommendations

Based on the vegetation trial conditions observed since 2020, eight recommendations for further assessing potential failure modes identified during the Failure Modes and Effects Workshop are provided.

- 1) Continue monitoring vegetation through field surveys to identify the most successful herbaceous plants on the slopes and plateau plots for application in large scale reclamation.
- 2) Design and implement a noxious weed management program, which may include:
 - a. Manual weed removal; and/or
 - b. Application of herbicides.
- 3) Design and carry out a revegetation plan in the existing plots and slopes where high levels of mortality and/or bare ground has been observed. The revegetation plan will utilize plant species that have been identified as being the most successful. For tree species, saplings should be used instead of established trees to better understand whether saplings can withstand competition from the herbaceous ground cover.

Okane Consultants January 12, 2024 B-1003-228-004

- 4) Continue monitoring for active erosion and institute mitigating measures if significant erosion is observed. Mitigating measures include the following:
 - a. Reduce the slope angle to decrease the velocity of overland flow;
 - b. Apply erosion prevention materials such hydroseeding with ProGanics® Biotic Soil Media;
 - c. Spread mulch, straw, and woody debris, including logs, on the surface to slow the overland flow that occurs during periods of heavy precipitation and spring thaw;
 - d. Install straw wattles to decrease velocity of overland flow;
 - e. In the future, ensure that seeding activities are carried out immediately after landform construction; and/or
 - f. Scarify the surface to create microsites with enhanced moisture retention, seed germination, and reduced rates of overland flow ideal for plant establishment.
- 5) Continue to monitor root depth and spread to assess if tree roots penetrate the compacted clay layer.
- 6) Continue the soil sampling program within the plots to assess any changes in soil nutrient concentrations. The sampling program will build off the information collected in 2023 on effects of vegetation on soil properties.
- 7) Apply additional fertilizer to the plots with fertilized overburden. This application will help to establish whether an increase in plant available nutrient concentrations in overburden will have any impact on increasing the organic matter content and more closely mimic the natural soil profile.
- 8) Design and implement a sampling program for soil treatment types and vegetation material within the plots to assess ecotoxicity effects and bioaccumulation of metals in vegetation materials. This sampling program will help better understand if any migration or leaching of toxic compounds from the overburden and/or underlying waste rock is occurring.

Okane Consultants

January 12, 2024

B-1003-228-004

vi

TABLE OF CONTENTS

INTRO	DDUCTION	11
1.1	Project Objectives and Scope	11
1.2	Report Organization	11
BACK	GROUND	12
2.1	Vegetation Trial Design	12
MON	ITORING ACTIVITIES	16
3.1	Purpose and Approach	16
3.2	Sloped Areas Erosion Survey	16
3.2.1	Site Photos West Slope	20
3.3	Plant Growth Measurements Slope Areas	20
3.4	Plateau Plots	25
3.5	Destructive Plot	35
DISC	USSION - FAILURE MODES AND EFFECTS	38
4.1	Establishment and Persistence of Vegetation	38
4.1.1	Sloped Areas	38
4.1.2	Plateau plots	38
4.2	Effects of Vegetation on Erosion	45
4.3	Effects of Roots on Compacted Clay Layer	46
4.4	Availability of Plant Nutrients in the Overburden	46
4.5	Toxicity Effects of Overburden Constituents on Vegetation	48
4.6	Effect of Density from Vehicle Traffic on Plant Establishment and Survival	49
SUMA	MARY OF RECOMMENDATIONS	50
REFER	RENCES	52
	1.1 1.2 BACK 2.1 MON 3.1 3.2 3.2.1 3.3 3.4 3.5 DISCI 4.1 4.1.1 4.1.2 4.2 4.3 4.4 4.5 4.6 SUMA	1.2 Report Organization BACKGROUND 2.1 Vegetation Trial Design MONITORING ACTIVITIES 3.1 Purpose and Approach 3.2 Sloped Areas Erosion Survey 3.2.1 Site Photos West Slope 3.3 Plant Growth Measurements Slope Areas 3.4 Plateau Plots 3.5 Destructive Plot DISCUSSION - FAILURE MODES AND EFFECTS 4.1 Establishment and Persistence of Vegetation 4.1.1 Sloped Areas 4.1.2 Plateau plots 4.1.2 Plateau plots 4.1.3 Effects of Vegetation on Erosion 4.1.4 Availability of Plant Nutrients in the Overburden 4.1 Toxicity Effects of Overburden Constituents on Vegetation 4.1 Toxicity Effects of Overburden Constituents on Vegetation

Appendix A Plot Growth Indicator Measurements & General Hea	ılt	h
---	-----	---

A m m a m alise D	Dhalas of Trac	Diata by Dia ale	and Call Translation
Appendix B	rnotos of free	PIOTS DV BIOCK	and Soil Treatmen

Appendix C Analytical Lab Tables

Appendix D Laboratory Data Reports

LIST OF TABLES

Table 2.1: General native seed mix used for seeding the slopes.	15
Table 3.1: Major erosion features on sloped areas (S-sheet, R-rill, G-gully)	16
Table 3.2: Percent vegetative ground coverage and dominant and minor species compositio	n on
sloped areas	21
Table 3.3 General health of planted trees and shrubs (H-healthy, H/S – healthy/struggling, S-str	uggling,
S/D – struggling/dead, D-dead).	27
Table 3.4 Mean tree and shrub growth indicator measurements +/- standard deviation	30
Table 3.5: Average vegetative ground coverage (%) observed in Autumn 2020, 2021, 2022, an	nd 2023.31
Table 3.6: Noxious weed density distribution.	33
Table 3.7: General health of trees and shrubs planted in the Destructive Plot (H-healthy, S-strug	ggling, D-
dead)	35
Table 3.8: 2023 Destructive plot root investigation	37
Table A.1: Plot Growth Indicator Measurements & General Health for 2023 Survey	55

LIST OF FIGURES

Figure 2.1:	Arrangement of soil treatments in plots.	2
Figure 2.2:	Arrangement of vegetation treatments in plots	13
Figure 2.3:	Arrangement of slope treatments.	13
Figure 3.1:	Site photos of north slope. Broadcast (top left), hydroseed (top right), control (bottom left)	,
	and traffic (bottom right)	17
Figure 3.2:	Site photos of east slope. Control (top left), hydroseed (top right), and broadcast (bottom).
		8
Figure 3.3:	Site photos of south slope. Broadcast (top left), traffic (top right), hydroseed (bottom right)	,
	control (bottom left).	9
Figure 3.4:	Site photos of west slope. Control (top left), broadcast (top right), and hydroseed (bottom).
		20
Figure 3.5:	South slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top	
	right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right)	22
Figure 3.6:	East slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top	
	right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right)	23
Figure 3.7:	North slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top	
	right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right)	24
Figure 3.8:	West slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top	
	right), August 9, 2022 (bottom left), and September 7, 2022 (bottom right)	25
Figure 3.9:	Average vegetative ground coverage	32
Figure 3.10:	Classes of weed density distribution.	33
Figure 3.11:	Average noxious weed density distribution class	35
Figure 3.12:	Site photos of the destructive plot. Destructive plot grid 1 (top left), grid 2 (top right), and	
	grid 3 (bottom).	37
Figure 4.1:	Average mortality rate in 2023.	39
Figure 4.2:	Average stress level rate in 2023 as a percentage (%) across blocks for each tree or shrub	
	species	4 0
Figure 4.3:	Average number of healthy trees and shrubs in thin topsoil plots	12
Figure 4.4:	Average number of healthy trees and/or shrubs in tilled topsoil plots	43
Figure 4.5:	Average number of healthy trees and/or shrubs in fertilized overburden plots	14
Figure 4.6:	Average number of healthy trees and/or shrubs in control (overburden) plots	15
Figure 4.7:	Plant available nutrient concentrations at a depth of 0 to 0.2 mbgs	17
Figure 4.8:	Plant available nutrient concentrations at a depth of 0.3 to 0.5 mbgs	17

Okane Consultants
B-1003-228-004
January 12, 2024
x

1 INTRODUCTION

New Gold's Rainy River Mine (RRM) must demonstrate to government regulators and community stakeholders that vegetation can successfully be re-established as part of ongoing progressive reclamation and closure. Potential failure modes for re-vegetation strategies of the covered mine rock stockpiles were identified during a failure modes and effects analysis (FMEA). Uncertainties that remained following the identification of specific failure modes were scheduled to be addressed as part of a vegetation research program (Okane, 2018). The following report constitutes a summary of observations at the ongoing vegetation trials.

1.1 Project Objectives and Scope

The overall closure objective for establishing vegetation on closure landforms at RRM is to meet land use expectations for desired vegetation community structure to mimic the surrounding community types where feasible. A specific objective of closure revegetation is to establish a natural functioning vegetation community that supports local land use and wildlife. Therefore, the objective of the vegetation trial is to test the cover system configurations and vegetation mixes that are most likely to result in a self-sustaining ecosystem that is compatible with the surrounding area (Okane, 2018).

1.2 Report Organization

For convenient reference, this report has been subdivided into the following sections:

Section 2 – provides pertinent background information for this study;

Section 3 – provides the results of monitoring activities undertaken in 2023;

Section 4 – provides a detailed discussion of 2023 activities with respect to the identified failure modes and effects;

Section 5 – provides a summary of recommendations to continue assessing the failure modes and effects established at the start of the project; and

Section 6 – provides a list of references.

Okane Consultants January 12, 2024
B-1003-228-004 11

2 BACKGROUND

The requirement for conducting a vegetation trial was a result of a risk to the success of the closure system identified during the FMEA workshop. The FMEA workshop identified that a failure to establish vegetation on the final closure landform represented a sufficient risk such that a mitigation measure was required. Thus, the vegetation trial described herein is meant to serve as a means of mitigating these risks.

2.1 Vegetation Trial Design

The vegetation trial is designed as a randomized block study and is situated on the plateau of a dedicated trial area. Combinations of four soil treatments and nine vegetation treatments are arranged in three replicates totalling 108 plots. A destructive plot area is designated for destructive root sampling and investigation as the trial progresses. Slopes surrounding the block study have been seeded with various methods and are used to qualitatively evaluate operational seeding techniques, vegetation establishment, and erosion. Planned arrangement of the trial area is presented for reference in Figure 2.1 Figure 2.2 Figure 2.2, and Figure 2.3 Figure 2.3.

Figure 2.1: Arrangement of soil treatments in plots.

(Okane, 2019)

Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

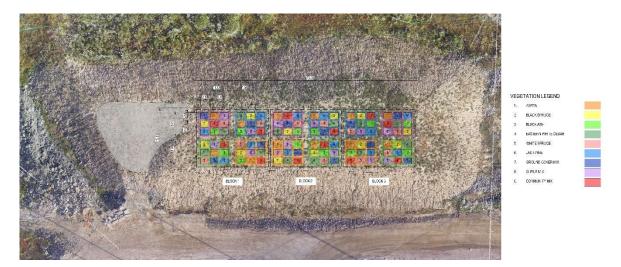


Figure 2.2: Arrangement of vegetation treatments in plots.

(Okane, 2019)

Figure 2.3: Arrangement of slope treatments.

(Okane, 2019)

The general cover system configuration planned for use on the RRM stockpiles consists of a 0.5 m barrier layer overlain by a 1.0 m growth medium layer, designed to limit net percolation (NP) and control oxygen (O_2) ingress to the mine rock. The enhanced cover system uses both moisture store-and-release and enhanced runoff principles to achieve reduced NP. The barrier layer within the cover system controls O_2 ingress by effectively eliminating advective gas transport.

Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

The vegetation trial was constructed in 2019 using the same cover system design, with clay overburden used for both the barrier and growth medium layers. Four soil treatments applied to the plateau plot areas were chosen to represent potential options for operational revegetation (Figure 2.1):

- 1) Thin topsoil a 0.15 m layer of topsoil was applied to the surface;
- 2) Tilled topsoil a 0.15 m layer of topsoil was applied to the surface and then mixed into the overburden using a skid steer tiller;
- 3) Fertilized overburden a commercial mix of fertilizer, mainly comprised of bonemeal, was applied to the overburden surface using a skid steer tiller; and
- 4) Control no amendment or modification to the overburden surface.

The species chosen for inclusion in the trial represent locally common or significant species (Figure 2.2):

- 1) Aspen;
- 2) Black Spruce;
- 3) Paper Birch (formally referred to as Black Ash in previous reports);
- 4) Eastern White Cedar;
- 5) White Spruce;
- 6) Jack Pine;
- 7) Ground Cover Mix may include species common to the local ecosystem, such as Bearberry, Blueberry, Ground Cedar, High Bush Cranberry, Pincherry, or Labrador Tea;
- 8) Shrub Mix may include species common to the local ecosystem, such as, Saskatoon Berry, Beaked Hazelnut, Alder, Willow, or Red Osier Dogwood; and
- 9) Community Mix culturally significant species selected by local communities, not necessarily found in the local area.

Experimental tree plot planting on the plateau commenced in late October 2019 but was not completed that year. Planting was completed in November 2020. Of note, Tobacco and Juniper species were not planted and are planned to be excluded from the trial. Commercial availability of Tobacco and Juniper species is limited and may not be feasible to include them in large-scale reclamation operations.

Okane Consultants January 12, 2024
B-1003-228-004 January 12, 2024

The vegetation trial plot is representative of an upland-type habitat on the closure landscape as per recommendations by the Ontario Ministry of Natural Resources and Forestry (MNRF) (Amec Foster Wheeler, 2015). Therefore, a general native seed mix was used for seeding the slopes. The general native seed mix composition is listed in Table 2.1.

Table 2.1: General native seed mix used for seeding the slopes.

Common Name	Species	Seed Species Composition ¹ (%)
Slender Wheat Grass	Elymus trachycaulus	6.58
Big Bluestem	Andropogon gerardii	5.92
Canada Wild Rye	Elymus canadensis	5.26
Virginia Wild Rye	Elymus virginicus	8.55
Fowl Bluegrass	Poa palustris	1.58
Poverty Oatgrass	Danthonia spicata	1.05
Fringed Brome	Bromus iliates	3.95
	Total Grasses	32.89
Black-eyed Susan	Rudbeckia hirta	0.75
Blue Vervain	Verbena hastata	0.56
	Total Forbs	1.31
Annual Oats (nurse crop) (replace with winter wheat when applied Aug 15 to Oct 15)	Avena Sativa	65.79

¹ Seed species composition may vary based on commercial availability of seed at the time of construction. Species removed from the seed mix per MNRF comments received on May 21, 2015, include Showy Tick Trefoil (Desmodium canadense) and Wild Bergamot (Monarda fistulosa). Additional species diversity is expected through natural colonization.

The slope areas surrounding the trial were split into four separate seeding treatment options to inform on potential sediment and erosion control methods (Figure 2.3). These treatment options, executed in September 2019, consisted of hydroseeding, broadcast seeding, trafficked surface (compacted growth media), and a control section where no seeding occurred. The hydroseed method included the use of a commercially available product ProGanics® Biotic Soil Media from Profile Products. In September 2020, after high rates of erosion were observed on sloped areas across all seeding treatments, ProGanics® Biotic Soil Media was applied to all sloped areas.

Construction of the overburden destructive plot was completed in autumn 2019. Some species were planted on the plot in late October 2019, and planting was completed in November 2020.

Okane Consultants January 12, 2024
B-1003-228-004 January 12, 2024

MONITORING ACTIVITIES

3.1 **Purpose and Approach**

Okane personnel visited the vegetation trial on September 5 to September 7, 2023, to complete an erosion survey of the sloped areas of the trial, record growth indicator measurements for early plant growth trajectories, compile a species composition list, assess composition and density of noxious weeds, complete a root investigation at the destructive plots, and conduct a soil sampling program.

3.2 Sloped Areas Erosion Survey

In general, significant erosional features were observed on the sloped areas of the trial in previous years, however in 2023 no active erosion was observed, apart from a gully on one section of the south slope. Measured erosional features are included in Table 3.1. Historical erosion features were difficult to identify on most trial areas due to dense vegetative coverage. Photos of the sloped areas can be found below in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4.

Table 3.1: Major erosion features on sloped areas (S-sheet, R-rill, G-gully).

Slope Orientation	Hydroseed	Broadcast	Traffic	Control
North	No active erosion wo	as observed in 2023, all his vegetated c		remain but were fully
East	No active erosion wo	as observed in 2023, all his vegetated c		remain but were fully
South		s observed in 2023, all historas fully vegetated and st		GULLY Entire slope length Depth = 30 cm Width = 25 cm
West	No active erosion wo	as observed in 2023, all his vegetated c		remain but were fully

Okane Consultants January 12, 2024 16

Figure 3.1: Site photos of north slope. Broadcast (top left), hydroseed (top right), control (bottom left), and traffic (bottom right).

January 12, 2024 B-1003-228-004 17

Figure 3.2: Site photos of east slope. Control (top left), hydroseed (top right), and broadcast (bottom).

 Okane Consultants
 January 12, 2024

 B-1003-228-004
 18

Figure 3.3: Site photos of south slope. Broadcast (top left), traffic (top right), hydroseed (bottom right), control (bottom left).

 Okane Consultants
 January 12, 2024

 B-1003-228-004
 19

3.2.1 Site Photos West Slope

Figure 3.4: Site photos of west slope. Control (top left), broadcast (top right), and hydroseed (bottom).

3.3 Plant Growth Measurements Slope Areas

Vegetation growth measurements were collected that can be used to quantify vegetation growth in the experimental tree plots at regular annual intervals. General observations were also noted along the slopes and at the destructive plot.

Vegetative ground coverage increased, across all sloped areas (Table 3.2). Of note, all slopes were treated with ProGanics® Biotic Soil Media in September 2020 to minimize further erosion. Ground coverage increased from 2022 with all slope treatment areas having 100% coverage, except for a portion of the south slope originally serving as the control plot, which had 75% coverage. Photos of slope vegetation ground cover can be found below in Figure 3.5, Figure 3.6, Figure 3.7, and Figure 3.8

Okane Consultants

January 12, 2024

B-1003-228-004

20

Table 3.2: Percent vegetative ground coverage and dominant and minor species composition on sloped areas.

Slope Orientation	Hydroseed	Broadcast	Traffic	Control
	100%	100%	100%	100%
	Dominant Species: Birdsfoot Trefoil (BT), Canada Wild Rye	Dominant Species: BT, SC	Dominant Species: BT, CWR	Dominant Species: BT
North	(CWR) Minor Species: Reed Grass (RG), Sweet Clover (SC), Plantain, Noxious Weeds ¹	Minor Species: CWR, Golden Rod, Virginia Wild Rye (VWR), Poplars	Minor Species: Red Clover, Fowl Blue Grass (FBG), Plantain, RG, Noxious Weeds	Minor Species: Red Clover, CWR, Golden Rod, FBG, Plantain, Poplars, Dandelion, RG, Noxious Weeds
	100%	100%		100%
East	Dominant Species: BT Minor Species: CWR,	Dominant Species: BT, CWR	- n/a	Dominant Species: BT, VWR
Eddi	FBG, Plantain, RG, Slender Wheat Grass (SWG), Noxious Weeds	Minor Species: Red Clover, RG, SW, Noxious Weeds	11/4	Minor Species: CWR, Dandelion, SWG, Noxious Weeds
	100%	100%	100%	75%
South	Dominant Species: BT, SC	Dominant Species: BT, CWR	Dominant Species: BT, CWR	Dominant Species: BT, CWR
300111	Minor Species: CWR, VWR, Noxious Weeds	Minor Species: Red Clover, Golden Rod, Plantain, SC, Noxious Weeds	Minor Species: SC, Noxious Weeds	Minor Species: VWR, Noxious Weeds
	100%	100%		100%
West	Dominant Species: BT, SC	Dominant Species: BT, SC	- n/a	Dominant Species: BT, SC
	Minor Species: Red Clover, Golden Rod, VWR, Noxious Weeds	Minor Species: CWR, Golden Rod, Plantain, Noxious Weeds		Minor Species: Aster, CWR, Clover, FBG, Plantain, Golden Rod

^{1 -} Noxious Weeds are composed of a mixture of Canada Thistle, Sow Thistle, Common Tansy, and Coltsfoot.

January 12, 2024 B-1003-228-004 21

Figure 3.5: South slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right).

Okane Consultants
B-1003-228-004
January 12, 2024
22

Figure 3.6: East slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right).

 Okane Consultants
 January 12, 2024

 B-1003-228-004
 23

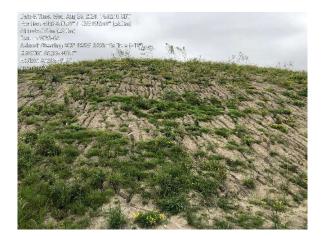


Figure 3.7: North slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top right), August 9, 2022 (bottom left), and September 7, 2023 (bottom right).

Okane Consultants
B-1003-228-004
January 12, 2024
24

Figure 3.8: West slope vegetative ground coverage. August 26, 2020 (top left), August 18, 2021 (top right), August 9, 2022 (bottom left), and September 7, 2022 (bottom right).

3.4 Plateau Plots

It was noted that in the Block 3 tilled topsoil treatment, Black Spruce was planted in the plot designated for White Spruce. The community mix plots were not planted, except for selected graminoid species in select plots. Paper Birch trees were planted in lieu of Black Ash and therefore in this report, Black Ash plots were renamed to Birch.

A general health check was performed during the survey. Planted tree species were rated on a qualitative 5-point scale to gauge if the tree/shrub had established well:

Healthy (H) – the specimen generally appeared to be in good health;

Okane Consultants January 12, 2024 25

- Healthy / Struggling (H/S) the specimen was not in prime condition, showing some sign(s) of poor health;
- Struggling (S) the specimen was in poor condition, with the majority of the plant showing signs
 of wilting, lost leaves, or discolouration;
- Struggling / Dead (S/D) the specimen was in very poor health or unclear if the plant had died;
 and
- Dead (D) the specimen was clearly dead or had been completely uprooted.

Overall, the general health of the planted species appeared to be comparable to previous years. Some general observations for the various planted species include:

- Aspen and Birch Mortality rates have remained relatively low with the lowest rates observed in the fertilized overburden and control soil treatments.
- Black Spruce Mortality rates are highly variable across the different soil treatment areas. However, mortality rates appear to be highest in the thin and tilled topsoil soil treatments.
- White Spruce Appear to be struggling and/or dead in all soil treatments.
- Eastern White Cedar Mortality rates are very low however all trees are struggling, irrespective of the soil treatment.
- Jack Pine Mortality rates of Jack Pine are very high across all soil treatments.
- Shrub mix It is unclear as to which exact species were included in the shrub mix plots, however Willow and Dogwood appeared to have low rates of mortality across all soil treatments.
- Groundcover Mix It is unclear as to which exact species were included in the groundcover mix
 plots, however High Bush Cranberry and Pincherry had variable rates of mortality with the highest
 rates being observed in the control soil treatment.

Error! Reference source not found. Table 3.3 provides a summary of general health observed during the experimental tree plot survey. A detailed summary of general health recorded during the 2023 Survey is provided in Appendix A. Photos of most tree plots across blocks and soil treatments are displayed in Appendix B.

Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

Table 3.3 General health of planted trees and shrubs (H-healthy, H/S – healthy/struggling, S-struggling, S/D – struggling/dead, D-dead).

6	Soil		Blo	ck 1			Blo	ck 2		Block 3			
Species	Treatment	2020	2021	2022	2023	2020	2021	2022	2023	2020	2021	2022	2023
	Thin Topsoil	9H, 1D	6H, 3S, 1D	5H, 1H/S, 1S, 3D	2H, 3S, 5D	6H, 1H/S, 3S/D	6H, 4D	7H, 3D	4H, 3S, 3D	10H, 1D	5H/S, 3S, 2D	8H, 2D	5H, 4S, 2D
Aspen	Tilled Topsoil	10H	5H, 1S, 4D	2H/S, 4S, 3D	3H, 3S, 4D	9H, 1S/D	10H	5H, 2S, 3D	1S, 6D	9H, 1S	10H	8H, 2D	6H, 2S, 2D
	Fertilized Overburden	9H, 1D	9H, 1D	9H, 1D**	5H, 2S, 1D	10H	10H	9H, 1D	6H, 3S, 1D	10H, 1D	10H	10H	5H, 5S
	Control	9H, 1D	9H, 1D	9H, 1D	5H, 3S, 1D	10H	10H	10H/S	7H, 3S	10H	10H	9H, 1S/D	6H, 4S
	Thin Topsoil	10H	2H, 3S, 5D	2H, 8D	3H, 5D	10H	3H, 3S, 4D	1H/S, 2S, 7D	8D	10H	10D	10D	9D
Discola Common	Tilled Topsoil	9H, 1D	4H/S, 1S, 5D	3H, 7D	2 H, 9D	3H, 6S, 1D	10D	10D	2H, 1S, 5D	10H	1S, 9D	10D	10H, 1S*, 9D*
Black Spruce	Fertilized Overburden	10H	10H	10H	7H, 3S	10H	10H	10H	108	9H, 1H/S	10D	10D	10D
	Control	10H	10H	10H	2H, 8S	10H	10H	8H, 2S	8H, 2S	10H	6H, 2S, 2D	8H, 1S, 1D	2H, 3S, 5D
	Thin Topsoil	10H	108	6H, 4H/S	3S, 6D	9H, 1H/S	10H	4H, 1H/S, 2S, 3D	108	9H, 1D	9S, 1D	8H/S, 2D	5H, 3S, 2D
Birch	Tilled Topsoil	10H	9\$	4S, 1S/D, 5D	6S, 4D	9H, 1D	9H/S, 1D	3S, 7D	3S, 7D	10H	4H, 6S	8H, 2D	3H, 5S
	Fertilized Overburden	10H	10H	10H	8H, 1S	10H	10H	10H	4H, 6S	10H	10H	10H	7H, 2S, 1D
	Control	10H	10H	10H	5H, 5\$	10H	10H	10H	10H	9H, 1H/S	9H, 1S	9H, 1S	5H, 5S
Eastern	Thin Topsoil	108	10S/D	4SD, 6D	9\$	10H	108	4S, 6D	7S, 2D	11H/S	11S/D	4S, 7D	108
White Cedar	Tilled Topsoil	108	10S/D	10S/D	9\$	10H	10S/D	3S, 7D	108	10S/D	108	3S, 7D	9\$

Con a sin a	Soil		Blo	ck 1			Bloc	ck 2			Block 3			
Species	Treatment	2020	2021	2022	2023	2020	2021	2022	2023	2020	2021	2022	2023	
	Fertilized Overburden	10H	10H/S	10H	118	10H	10H/S	10H/S	108	11H/S	10S, 1D	5S, 6D	7\$	
	Control	10H/S	108	108	108	10H	10H/S	108	108	11H/S	118	11S/D	11S/D	
	Thin Topsoil	-	10D	10D	5D	-	10D	10D	5D	-	1H, 2S, 7D	1S, 9D	7D	
	Tilled Topsoil	-	10D	10D	7D	-	10D	1S, 9D	10D	-	10D	10D	-	
White Spruce	Fertilized Overburden	-	3S, 7D	2H, 3S, 1S/D, 4D	8D	-	10\$	1S, 9D	8D	-	1S, 9D	10D	1S, 4D	
	Control	-	1S, 9S/D	1S, 9D	6S, 4D	-	3H, 3S, 4D	7S, 3D	6S, 4D	-	3S, 7D	2S, 8D	2S, 6D	
	Thin Topsoil	-	-	-	-	-	-	-	-	-	-	-	-	
	Tilled Topsoil	-	-	-	-	-	-	-	-	-	-	-	-	
Jack Pine	Fertilized Overburden	-	-	-	-	-	-	-	-	-	-	-	-	
	Control	-	-	-	-	-	-	-	-	-	-	-	-	
	Thin Topsoil	6H	4S, 2D	1H, 2 S/D, 2D	1H, 3S	6H	6S	1S, 5D	2H	6H	5\$	1H/S, 1S, 4D	1H, 2D	
	Tilled Topsoil	4S, 1S/D, 1D	1S, 3S/D, 2D	5D	-	5H, 1D	6S	6D	1S, 1D	6H/S	3S, 3D	1S/D, 5D	1H, 1S, 1D	
Ground Cover Mix	Fertilized Overburden	6H	6\$	2H/S, 1S/D, 3D	1\$	4H, 1H/S	6H/S	2H/S, 2S, 2D	3S, 1D	6H	6\$	2H, 2S/D, 2D	1H, 1S	
	Control	4H, 2S	6\$	2H, 2S/D, 2D	2H	5H, 1H/S	6S	1S, 1S/D, 4D	1S, 1S/D, 4D	6H	6\$	2S, 2S/D, 2D	2S, 2D	
Shrub Mix	Thin Topsoil	4H	2S/D, 2D	2S/D, 2D	ЗН	4H	1S, 3D	4D	1H, 2S, 1D	4H	2S, 2D	2S, 2S/D	ЗН	

Consider	Soil		Blo	Block 1			Block 2				Block 3				
Species	Treatment	2020	2021	2022	2023	2020	2021	2022	2023	2020	2021	2022	2023		
	Tilled Topsoil	4H	4\$	4D	3H, 1S	4H	4\$	4D	1D	Н	3S, 1D	1H, 3D	2H, 2D		
	Fertilized Overburden	4H	4H	4H/S	2H, 2\$	4H	4H	1H, 2H/S, 1S	1H, 3S	4H	1H, 2S, 1D	2H, 2D	2H, 2\$		
	Control	4H	4H	4H/S	2H, 2S	4H	4H	4 S	3H, 1S	4H	1H, 3S	4D	4H		
	Thin Topsoil	-	-	-	-	-	-	-	-	-	3H	-	-		
Camana, waitu	Tilled Topsoil	-	-	-	-		ЗН	-	-		3H	-	-		
Community Mix	Fertilized Overburden	2H	2H	-	-	-	-		-		ЗН	-	-		
	Control	3H	3H	-	-		-		-	3H	3H	-	-		

⁻ No trees or shrubs identified in plot

^{*} Planted in white spruce design plot;

^{**} Dead aspen removed from plot in 2022

During the 2023 survey, three trees were randomly selected in each plot to measure the growth indicators. Several growth indicator measurements were recorded during the autumn survey for annual growth comparisons:

- Root Collar the diameter of the tree base at the widest part of the root collar (where the root joins the stem), or just above the ground surface, whichever is higher;
- Total Height the distance between the root collar and the base of the terminal bud (of the tallest stem). For leaning trees, this distance was measured along the slope of the stem;
- Diameter at Breast Height (DBH) the diameter of the tree at 1.3 m above the base; and
- Crown Diameter the average horizontal width of the crown.

A detailed summary of growth indicator measurements by plot are provided in Appendix A. Average indicator measurements by species are included in Table 3.4.

Table 3.4 Mean tree and shrub growth indicator measurements +/- standard deviation.

Tree Species	Root Collar (mm)	Crown Diameter (cm)			ight m)			DBH (mm		
<u>.</u>	20)20	2020	2021	2022	2023	2020	2021	2022	2023
Aspen	21.5 +/- 2.0	24.6 +/- 10.2	258.6 +/- 26	254.9 +/- 33.2	266.3 +/- 34.7	261.2 +/- 22.1	14 +/- 1.6	15.2 +/- 1.1	16.1 +/- 1.9	17.5 +/- 3.0
Black Spruce	22.5 +/- 26.7 +/- 3.1 7.5		99.5 +/- 17.8	107.8 +/- 16.8	117.0 +/- 12.3	144.2 +/- 55.4	n/a			9.5 +/- 4.7
Birch	21.6 +/- 2.4	29.9 +/- 9.0	219.6 +/- 30.4	213.4 +/- 31.3	226.4 +/- 28.7	208.9 +/- 41.7	10.8 +/- 2.2	11.3 +/- 2.4	11.1 +/- 2.4	10.2 +/- 3.3
Eastern White Cedar	22.0 +/- 4.7	16.3 +/- 6.1	99.4 +/- 10.8	96.5 +/- 16.5	100.2 +/- 14.5	100.0 +/- 11.1		n/a		
White Spruce	1	Not planted		68.1 +/- 16.7	69.4 +/- 19.9	50.3 +/- 19.5	Not planted		n/a	
Jack Pine					n/a					
Ground Cover Mix – Pincherry		175.1 /a +/- 67.9		+/-		n/a		16.3 +/- 4.2		
Ground Cover Mix - High Bush Cranberry		n	/a			65.5 +/- 35.4		n/a		

Okane Consultants January 12, 2024 B-1003-228-004

Tree Species	Root Collar (mm)			Height (cm)			DBH (mm)			
	20	020	2020	2021	2022	2023	2020	2021	2022	2023
Shrub Mix			n/a			91.1 +/- 28.5		n/c	1	
Community Mix	n/a									

n/a = no trees or shrubs were identified in plot to measure height, root collar, crown diameter, and/or DBH or DBH was not measured because height was under 1.3 m.

Measurements expressed as mean +/- standard deviation.

Vegetative ground coverage was estimated at each plot during the surveys. During the 2023 survey, vegetative ground coverage increased across all plots, and most notably in some of the plots with control and fertilized overburden soil treatments (Table 3.5). Figure 3.9 displays vegetative ground coverage from 2020 to 2023 across all blocks and vegetation types by soil treatment type.

Table 3.5: Average vegetative ground coverage (%) observed in Autumn 2020, 2021, 2022, and 2023.

		Blo	ck 1			Blo	ck 2			Blo	ck 3			Ave	rage	
Soil Treatment	2020	2021	2022	2023	2020	2021	2022	2023	2020	2021	2022	2023	2020	2021	2022	2023
Thin Topsoil	67	75	93	100	75	75	95	98	75	75	100	100	72	75	96	99
Tilled Topsoil	75	75	95	93	75	75	97	88	64	75	100	89	71	75	97	90
Fertilized Overburden	17	19	30	50	17	19	33	81	25	19	65	100	19	19	43	77
Control	19	19	32	52	17	19	25	59	22	19	38	86	19	19	32	66

Okane Consultants January 12, 2024 31

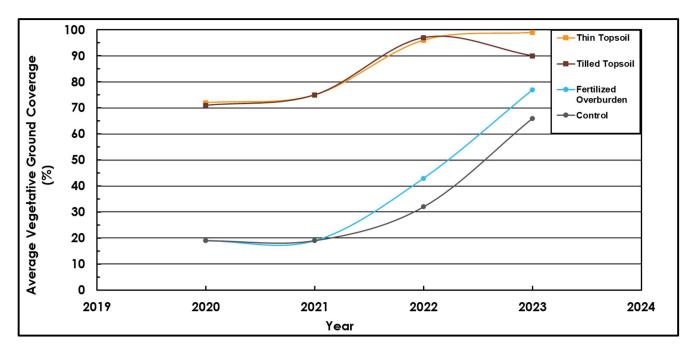


Figure 3.9: Average vegetative ground coverage.

An additional measurement of noxious weed density distribution was documented in most plots during the 2023 survey. Noxious weeds found in the plots included Canada Thistle, Sow Thistle, Coltsfoot, and Common Tansy. The density distribution was classified as per classes categorized in Figure 3.10. Table 3.6 displays the density distribution of noxious weeds identified during the 2023 survey. Figure 3.11 displays the average noxious weed density distribution class across soil treatment types identified during the 2023 survey. The highest average density distribution was found to occur in Black Spruce plots with thin topsoil while the lowest was in Aspen plots with control (overburden) soil. Generally, plots with thin topsoil and tilled topsoil, regardless of vegetation type, had a higher density distribution than plots with fertilized overburden or control (overburden) soil treatments.

Okane Consultants B-1003-228-004

DENSITY DISTRIBUTION							
Class	Description of abundance polygon	Distribution	Score				
0	None		5				
1	Rare	•	3				
2	A few sporadically occurring individual plants	• ••					
3	A single patch	48					
4	A single patch plus a few sporadically occurring plants	*					
5	Several sporadically occurring plants						
6	A single patch plus several sporadically occurring plants						
7	A few patches	* *	0				
8	A few patches plus several sporadically occurring plants	* . *					
9	Several well spaced patches	** * * * * *					
10	Continuous uniform occurrences of well spaced plants	:::::::					
11	Continuous occurrence of plants with a few gaps in the distribution						
12	Continuous dense occurrence of plants						
13	Continuous occurrence of plants with a distinct linear edge in the polygon	Mensey.					

Figure 3.10: Classes of weed density distribution.

(Alberta Government, 2017)

Table 3.6: Noxious weed density distribution.

Vegetation Treatment	Soil Treatment	Block 1	Block 2	Block 3	Average
		2023	2023	2023	2023
	Thin Topsoil	8	7	11	8.7
Aspen	Tilled Topsoil	5	6	11	7.3
	Fertilized Overburden	n/a	n/a	5	5.0
	Control	4	4	4	4.0
	Thin Topsoil	10	10	11	10.3
	Tilled Topsoil	n/a	4	8	6.0
Black Spruce	Fertilized Overburden	4	7	6	5.7
	Control	n/a	4	8	6.0
Birch	Thin Topsoil	10	n/a	8	9.0

Okane Consultants B-1003-228-004

Vegetation	Soil Treatment	Block 1	Block 2	Block 3	Average
Treatment		2023	2023	2023	2023
	Tilled Topsoil	7	n/a	5	6.0
	Fertilized Overburden	4	n/a	11	7.5
	Control	n/a	n/a	n/a	n/a
	Thin Topsoil	10	8	9	9.0
Eastern	Tilled Topsoil	n/a	5	8	6.5
White Cedar	Fertilized Overburden	4	7	11	7.3
	Control	n/a	4	8	6.0
	Thin Topsoil	11	2	4	5.7
	Tilled Topsoil	5	n/a	11	8.0
White Spruce	Fertilized Overburden	n/a	8	7	7.5
	Control	5	4	8	5.7
	Thin Topsoil	10	2	8	6.7
	Tilled Topsoil	5	n/a	5	5.0
Jack Pine	Fertilized Overburden	8	n/a	6	7.0
	Control	9	4	6	6.3
	Thin Topsoil	4	8	n/a	9.0
Ground	Tilled Topsoil	10	5	11	8.7
Cover Mix	Fertilized Overburden	3	6	8	5.7
	Control	n/a	n/a	n/a	n/a
	Thin Topsoil	11	7	4	7.3
	Tilled Topsoil	9	6	8	7.7
Shrub Mix	Fertilized Overburden	n/a	5	7	6.0
	Control	4	4	7	5.0
	Thin Topsoil	10	2	10	5.3
Community	Tilled Topsoil	5	n/a	5	5.0
Mix	Fertilized Overburden	n/a	n/a	8	8.0
	Control	n/a	8	5	6.5

n/a = noxious weeds were noted to be growing in the plot, but the density distribution was not identified.

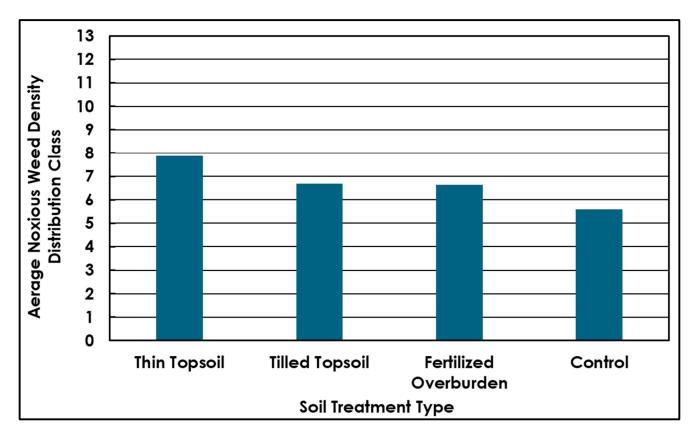


Figure 3.11: Average noxious weed density distribution class

3.5 Destructive Plot

Minimal erosion was observed in the destructive plot, except for some down-slope erosion on the north edge of the plot. Vegetation was generally noted to be well established, and ground cover has increased since the 2021 survey. Estimated percent ground cover has increased from 75% in 2020 to 100% in 2023. Table 3.7 provides a summary of general tree health observed during the destructive plot survey.

Table 3.7: General health of trees and shrubs planted in the Destructive Plot (H-healthy, S-struggling, D-dead).

Si	Destructive Plot							
Species —	2020	2021	2022	2023				
Aspen	8 H, 4 S	7 H, 2 S, 3 D	4 H, 2 S, 4 D	1H, 3H/S, 2 S/D				
Black spruce	14 H	5 H, 3 H/S, 6 D	4 H, 3 S, 4 D	1H, 1H/S, 2S, 1S/D				
Black ash	21 H, 1 S	1 H/S, 13 S, 1 S/D, 6 D	5 H, 2 H/S, 2 S, 12 D	4S, 3S/D				
Eastern white cedar	11 \$	8 S/D	1 S/D, 5 D	5S/D, 2D				
White spruce	-	6 D	6 D	-				
Jack pine	10 H, 1 S	1 S/D, 10 D	1 S/D, 8 D	3S/D, 1D				

Okane Consultants B-1003-228-004

Consider		Destruc	ctive Plot	
Species —	2020	2021	2022	2023
Shrub (1)	8 H	8 S/D	2 S, 9 D	
Shrub (2)	20 H			
Cherry				5S/D, 2D
Dogwood				5H, 3 H/S
Cranberry				2H
Willow				3H, 2H/S

Only struggling or dead trees were noted in the autumn survey **(bolded)**, all other specimens were labelled as healthy. Shrub (1) assumed to be raspberry bushes; Shrub (2) unknown and not recorded in 2021.

Three random locations were selected, and 1.0×1.0 m grid area was set up at each location. At each grid a different tree species was chosen, and a root investigation was conducted which included root depth and spread (Table 3.8). In addition, the total ground coverage was estimated. Rooting depth did not extend into the compacted clay layer and remained within the overlying overburden. Photos of the three grids used for the root investigation on the destructive plot are found below in Figure 3.12.

Table 3.8: 2023 Destructive plot root investigation.

Grid	Tree Species	Root Depth	Root Spread	Ground Coverage (%)
1	Willow	45 cm	75 cm	100
2	Cherry	22 cm	18 cm	100
3	Aspen	37 cm	23 cm	100

Figure 3.12: Site photos of the destructive plot. Destructive plot grid 1 (top left), grid 2 (top right), and grid 3 (bottom).

January 12, 2024 B-1003-228-004

DISCUSSION - FAILURE MODES AND EFFECTS

The requirement for conducting vegetation trials was a result of risks identified during the FMEA Workshop. As identified in the Detailed Design, the failure modes that would be assessed include:

- Establishment and persistence of vegetation
- Effects of vegetation on erosion
- Effects of roots on compacted clay layer
- Availability of plant nutrients in the overburden
- Toxicity effects of overburden constituents on vegetation
- Effect of density from vehicle traffic on plant establishment and survival

A summary with respect to each failure mode and one or more recommendation(s) to better assess and test the respective failure mode in future vegetation surveys has been provided below.

4.1 Establishment and Persistence of Vegetation

4.1.1 Sloped Areas

Vegetation on sloped areas continued to increase in 2023 compared to 2022 with ground coverage at 100% for all but the south slope control section where 75% ground coverage was observed.

Species composition was comparable across the four different slope treatments, with Birdsfoot Trefoil, Sweet Clover, Canada Wild Rye, and Virginia Wild Rye representing the dominant species. Birdsfoot Trefoil and Sweet Clover, although not considered as noxious weeds are not native to the area and were not part of the reclamation seed mix. This would indicate that the sloped areas are highly prone to weed infestations and if allowed to establish, are very effective at outcompeting the desirable species. On sloped surface where hydroseeding was conducted early, desirable graminoid species such as Canada Wild Rye, and Virginia Wild Rye were quick to establish and weed infestations have been slower to develop. Minor species observed across all slopes were a mixture of hydroseeded graminoids, volunteer native species, undesirable weeds, and noxious weeds.

4.1.2 Plateau plots

Across the plateau plots the establishment of ground coverage is directly correlated to the presence of topsoil. In 2023, where topsoil is present, ground coverage ranged from 88 to 100%, where topsoil is not present, ground coverage ranged from 50 to 100 %.

Error! Reference source not found. Figure 4.1 displays mortality rate in 2023 as a percentage (%) across blocks and for each tree or shrub species by soil treatment type. Mortality rate was calculated by dividing number of species dead in 2023 by the total number of species identified during the 2023 Survey, the mortality rate was then averaged across block 1, 2, and 3. Mortality rate for Jack Pine and community mix were omitted because no tree or shrubs were identified in the plots during the 2023 Survey. **Error! Reference source not found.**

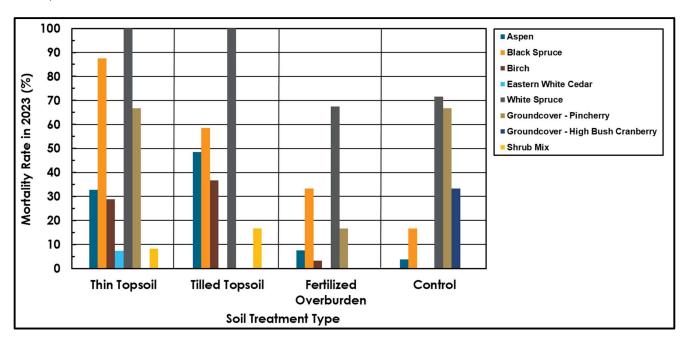


Figure 4.1: Average mortality rate in 2023.

Figure 4.2 displays average stress level rate in 2023 as a percentage (%) across blocks for each tree or shrub species by soil treatment type. Stress level rate was calculated by dividing the number of trees or shrubs in a struggling state in 2023 by the total number of species identified during the 2023 Survey, the stress level rate was then averaged across block 1, 2, and 3. Stress level rate for Jack Pine and community mix were omitted as no trees or shrubs were identified in the plots during the 2023 Survey.

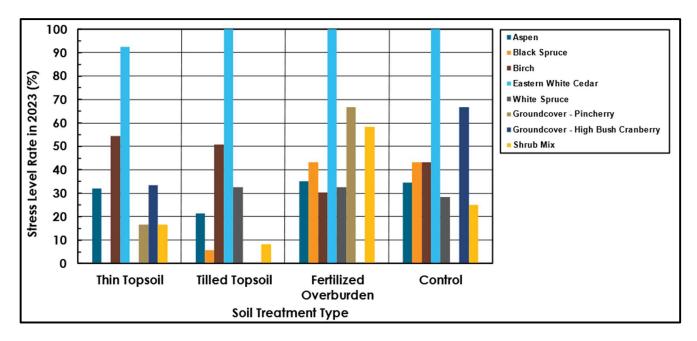


Figure 4.2: Average stress level rate in 2023 as a percentage (%) across blocks for each tree or shrub species.

Overall, Black Spruce, White Spruce, and Eastern White Cedar are the least successful tree species with higher stress levels and mortality, and less growth compared to Aspen and Birch. Black Spruce and Eastern White Cedar's poorer performance could be due to their preference to lowland swampy areas with ample water supply. Aspen and Birch are more tolerant of upland environments and a range of soil conditions as observed at the trial area. White Spruce is sensitive to frost damage when young and grows best in protected areas (Ministry of Natural Resources and Forestry, 2023). Therefore, the plateau plots with minimal protection and planted late in the growing season, may have not offered the coverage that promotes successful White Spruce establishment. Aspen and Birch may prove to be ideal for widespread use in large scale reclamation across a variety of topographical settings. White Spruce may also prove to be ideal in reclamation if planted earlier in the spring.

Pincherry and High Bush Cranberry were newly observed species in the ground cover plots during the 2023 Survey. When present, both species generally had low to moderate stress levels and mortality suggesting the species could be promising for use in large scale reclamation.

Willow and Dogwood Shrubs had low to moderate stress and mortality across the plots and could be good shrub species to consider for large scale reclamation.

Community plots, where no species appeared to have been planted, often had a comparatively higher density distribution of noxious weeds compared to other vegetation treatments.

Noxious weeds were observed to densely populate most plots, with a range of density distribution classes of 3-11 and an average density distribution class of 6.8 across all tree plots. The highest average density

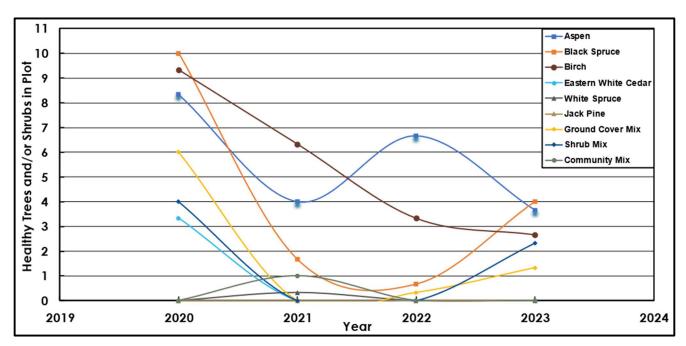
Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

40



distribution class, 10.3, was observed in the thin topsoil plot where Black Spruce had been planted but had experienced high mortality.

4.1.2.1 Thin Topsoil

Figure 4.3 provides a summary of the average number of healthy trees and shrubs across blocks in thin topsoil plots by year. Trees and shrubs were combined when counting healthy specimens in the ground cover mix as years prior to 2023 did not distinguish between Pincherry Trees and High Bush Cranberry.

- Black Spruce and White Spruce experienced high mortality (63 100%). Of the few surviving, moderate growth in both height and diameter for Black Spruce has been observed. Eastern White Cedar experienced low mortality (0 - 20%) but a high level of stress was observed (70-100%) with moderate growth in height.
- Aspen and Birch experienced low levels of stress (30 36%), low to moderate mortality (20-67%) and moderate increases in tree height and diameter.
- Ground cover communities were observed to have High Bush Cranberry and Pincherry with a range of mortality rates from 0 - 100%. Since none of these species were observed or measured in previous years, no conclusions can be drawn on height or diameter growth trends.
- Willow and Dogwood were observed in the shrub community plots and had low to moderate stress levels (0 - 50%), low mortality (0 - 25%), and moderate growth.
- Significant increase of herbaceous ground cover composed primarily of undesirable, non-native, and noxious weeds.

January 12, 2024 B-1003-228-004 41

Figure 4.3: Average number of healthy trees and shrubs in thin topsoil plots.

4.1.2.2 Tilled Topsoil

Figure 4.4 provides a summary of the average number of healthy trees and shrubs across blocks in tilled topsoil plots by year. Trees and shrubs were combined when counting healthy specimens in the ground cover mix as years prior to 2023 did not distinguish between Pincherry Trees and High Bush Cranberry.

- Black Spruce had low levels of stress (0 13%), variable levels of mortality (0 90%), and minimal growth in height and diameter.
- White Spruce experienced 100% mortality.
- Eastern White Cedar were all found to be in a stressed state with no mortalities observed and minimal growth in height.
- Aspen had low levels of stress (14 30%), variable levels of mortality (20 86%), and moderate growth in height and diameter.
- Birch has moderate to high stress (30 60 %) and mortality (40-70%), and low growth.
- Ground cover communities were observed to have Pincherry trees with moderate mortality and stress levels (40%) and no High Bush Cranberry. Since none of these species were observed or measured in previous years, no conclusions can be drawn on height or diameter growth.
- Willow and Dogwood were observed in the shrub community plots and had low stress levels (0 25%). The original number of planted shrubs is unknown therefore, mortality rates could not be determined.
- Significant increase of herbaceous ground cover composed primarily of undesirable, non-native, and noxious weeds.

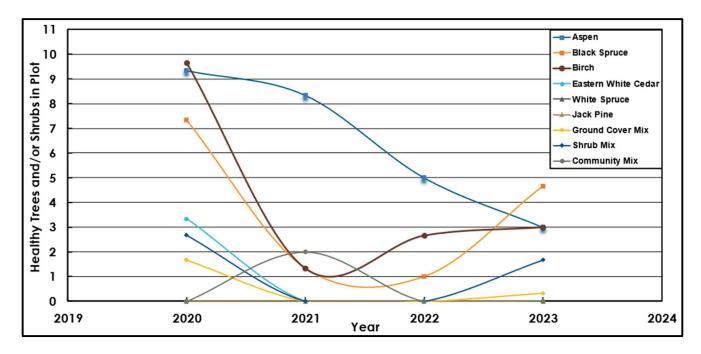


Figure 4.4: Average number of healthy trees and/or shrubs in tilled topsoil plots.

4.1.2.3 Fertilized Overburden

Figure 4.5 provides a summary of the average number of healthy trees and shrubs across all blocks in fertilized overburden plots by year. Trees and shrubs were combined when counting healthy specimens in the ground cover mix as years prior to 2023 did not distinguish between Pincherry Trees and High Bush Cranberry.

- Black Spruce had low to high levels of stress (0 100%), low to high levels of mortality (0– 100%), and minimal growth in height and diameter.
- White Spruce had low to high levels of stress (20 78%), low to high levels of mortality (22 100%), and minimal growth in height.
- Eastern White Cedar were all found to be in a stressed state with no mortalities observed and minimal growth in height.
- Aspen and Birch had low to moderate stress (11 60%), low mortality (0-10%) and Aspen had moderate growth in height and diameter while Birch had minimal growth.
- Ground cover communities were observed with one Pincherry in a stressed state. Since none of these species were observed or measured in previous years, no conclusions can be drawn on height or diameter growth.

Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

43

- Willow and Dogwood were observed in the shrub community plots and had moderate to high stress levels (50 75%), no mortality, and minimal growth.
- Significant increase of herbaceous ground cover composed primarily of undesirable, non-native and noxious weeds.

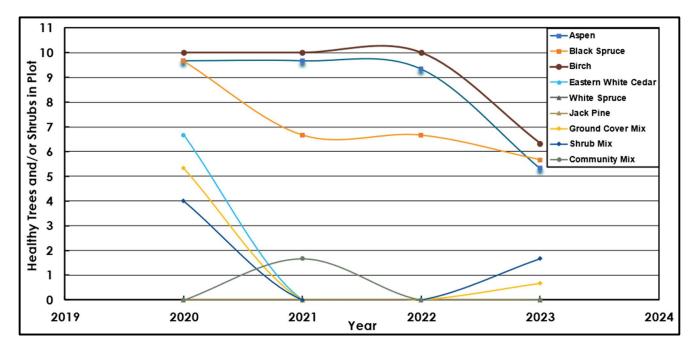


Figure 4.5: Average number of healthy trees and/or shrubs in fertilized overburden plots.

4.1.2.4 Control

Figure 4.6 provides a summary of the average number of healthy trees and shrubs across blocks in control (overburden) plots by year. Trees and shrubs were combined when counting healthy specimens in the ground cover mix as years prior to 2023 did not distinguish between Pincherry Trees and High Bush Cranberry. Black Spruce had moderate to high levels of stress (20 - 80%), low to moderate mortality (0 - 50%), and minimal growth in height and diameter.

- White Spruce had low to moderate levels of stress (33 60%), moderate to high mortality (40 100%), and minimal growth in height.
- Eastern White Cedar were all found to be in a stressed state with no mortalities observed and minimal growth in height.
- Aspen had low stress (30–40%) and mortality (0-10%) and moderate growth in height and diameter.

- Birch had low to moderate stress (0 50%), no mortality, and minimal growth in height and diameter.
- Ground cover communities were observed to have High Bush Cranberry and Pincherry with low to moderate stress (0 50%) and mortality (0 50%). Since none of these species were observed or measured in previous years, no conclusions can be drawn on height or diameter growth.
- Willow and Dogwood were observed in the shrub community plots and had low to moderate stress levels (0 50%), no mortality, and minimal growth.
- Significant increase of herbaceous ground cover composed primarily of undesirable, non-native and noxious weeds.

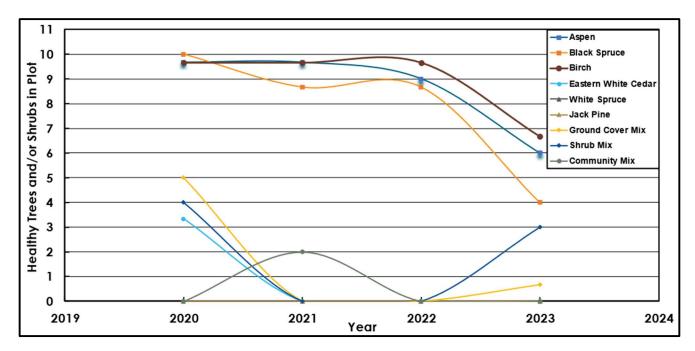


Figure 4.6: Average number of healthy trees and/or shrubs in control (overburden) plots.

4.2 Effects of Vegetation on Erosion

Vegetation on all sloped areas increased from 50 – 100% in 2022 to 75 – 100% in 2023. Sheet, rill, and gully formation has been observed on all slopes to a maximum depth of approximately 45 cm, most prominently on the lower slopes. However, all but one erosional feature appears to have developed early in the trials when ground coverage was minimal or non-existent and have been considered stable since 2022. The stabilization of erosional features correlates directly with the establishment of dense herbaceous ground cover.

Okane Consultants

January 12, 2024

B-1003-228-004

January 12, 2024

45

Results form the immediate and short-term indicate that herbaceous ground cover is highly effective at reducing and eliminating effects due to erosion, especially when established immediately after landform construction.

4.3 Effects of Roots on Compacted Clay Layer

Tree root depth has not penetrated beneath the overburden into the compacted clay layer.

Aspen root depth and spread has moderately increased compared to previous years.

4.4 Availability of Plant Nutrients in the Overburden

Soil samples were collected from all soil treatment plots and at two depths, 0 to 0.2 and 0.3 to 0.5 metres below ground surface (mbgs). Samples were submitted to an accredited laboratory for analysis. Plant available nutrients, soil organic parameters, and physical parameters were measured in each of the soil treatments in all three blocks in 2023. A summary of plant available nutrients at a depth of 0 to 0.2 mbgs is displayed in **Error! Reference source not found.**, and at a depth of 0.3 to 0.5 mbgs in **Error! Reference source not found.**. Analytical lab tables can be found in Appendix C and Laboratory Data Reports can be found in Appendix D.

Nitrogen and phosphorus were found in significantly higher concentrations in thin topsoil and tilled topsoil compared to fertilized overburden or control (overburden) soil. Potassium was found to be in slightly higher concentrations in thin topsoil and tilled topsoil compared to fertilized overburden or control (overburden) soil. Background samples contained both the lowest concentrations of nitrogen and highest concentrations of phosphorus when compared to the samples collected from the soil treatment areas.

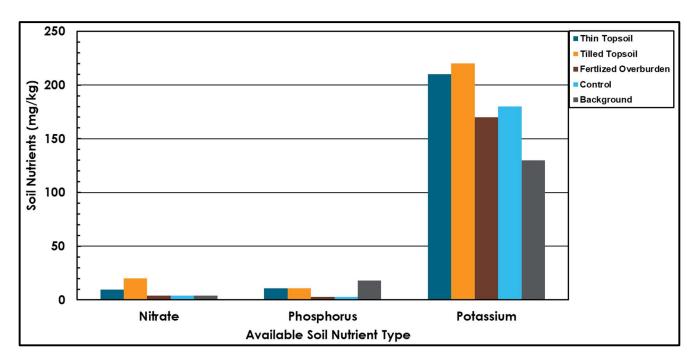


Figure 4.7: Plant available nutrient concentrations at a depth of 0 to 0.2 mbgs.

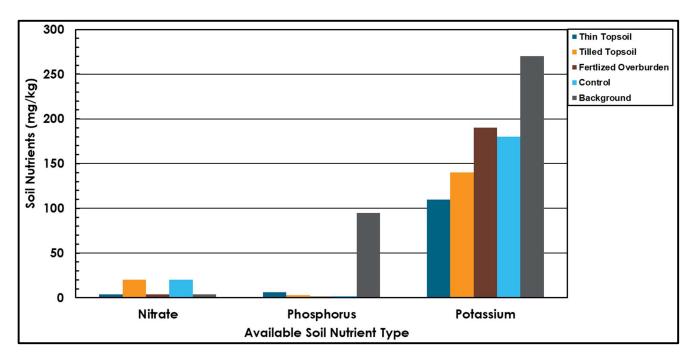


Figure 4.8: Plant available nutrient concentrations at a depth of 0.3 to 0.5 mbgs.

Total organic carbon and organic matter was found in much higher concentrations in thin topsoil, and tilled topsoil compared to fertilized overburden or control (overburden) soil. Background concentrations were found in moderate concentrations.

Moisture content was found to be higher in thin topsoil and tilled topsoil compared to fertilized overburden or control (overburden) soil. This would indicate the additional top topsoil has a positive impact on the water holding capacity. Background moisture content was comparable to fertilized overburden and control (overburden) soil.

Soil textures appear to be comparable across all soil treatment areas which included loam, clay loam, and clay. These textures are comparable to what is reported in background samples.

Trees planted in thin topsoil and tilled topsoil had comparable mortality levels to those planted in fertilized overburden and control (overburden) soil treatments. Therefore, tree mortality appears to be unaffected by nutrient and organic matter and carbon concentrations in the immediate to short-term.

Aspen had the highest cumulative average growth in height since 2020 in control (overburden) soil and the highest growth over the past year in fertilized overburden soil. Birch had the highest cumulative average growth in height since 2020 in fertilized overburden soil and the highest growth over the past year in thin topsoil. Black Spruce had the highest cumulative average growth in height since 2020 and over the past year in thin topsoil. Eastern White Cedar had the highest cumulative average growth in height since 2020 in control (overburden) soil and the highest growth over the past year in tilled topsoil. White Spruce had the highest cumulative average growth in height since 2020 and over the past year in control (overburden) soil.

Shrub species, including Dogwood, Willow, Pincherry, and High Bush Cranberry were only measured in the 2023 Survey and not in previous years. Therefore, the growth rate across years could not be assessed and only trends in height across plots during 2023 were identified. Dogwood and Willow heights were highest in fertilized overburden soil. Pincherry heights were highest in control (overburden) soil. High Bush Cranberry heights were highest in thin topsoil.

Over the immediate and short-term, the use of topsoil as a growth media appears to be highly beneficial to the establishment of herbaceous ground cover but less so for trees and shrubs, which generally had higher growth in fertilized and unfertilized overburden.

4.5 Toxicity Effects of Overburden Constituents on Vegetation

Toxicity to vegetation in the form of metal leaching has yet to be assessed at the vegetation trials. Salinity, although often naturally occurring, can have a toxic effect on vegetation at certain levels.

Soil samples were collected at two depths (0 to 0.2 and 0.3 to 0.5 mbgs), and from each of the soil treatment plots. Samples were submitted to an accredited lab for analysis of salinity parameters.

Analytical lab tables can be found in Appendix C and laboratory data reports can be found in Appendix D. Electrical conductivity and the sodium absorption ratio values reported in the all the soil treatment plots are considered low and comparable to background values. This would indicate that vegetation is not being impacted by salinity related issues at the vegetation trials and that all the soil treatment options are considered suitable as a growth media in the immediate to short-term with respect to salinity.

4.6 Effect of Density from Vehicle Traffic on Plant Establishment and Survival

Lower vegetative coverage compared to the other sloped areas in 2020, prior to hydroseeding the trafficked slopes, suggests that vegetative coverage is slower to establish on traffic sloped areas.

By 2023, the vegetative ground coverage on the traffic sloped areas increased to 100%, comparable to all other sloped areas. It is likely that the hydroseeding of all slopes in 2020, including on trafficked slopes, played a significant role in increasing the vegetative ground coverage.

In 2020 some grasses and weeds were present, similar to other sloped areas, but it is unclear what species composition were present in the traffic sloped area compared to the other sloped areas. In 2023, the traffic sloped area had a comparable prevalence and composition of undesirable weed species and seeded species to other slopes, with Birdsfoot Trefoil, Sweet Cover (undesirable weed species) and Canada Wild Rye, and Viginia Wild Rye (seeded graminoid species) identified as the dominant species present. The composition of vegetative ground coverage, both before and after hydroseeding, on traffic sloped areas has been comparable to the other sloped areas.

In 2020, both the north and south traffic slopes had undergone less immediate-term erosion compared to the surrounding sloped surfaces. However, over the short to medium-term, erosion across all sloped surfaces has developed comparably. By 2023, both north and south traffic sloped areas had no signs of active erosion, similar to surrounding sloped surfaces.

 Okane Consultants
 January 12, 2024

 B-1003-228-004
 49

SUMMARY OF RECOMMENDATIONS

- 1) Continue monitoring vegetation through field surveys to identify the most successful herbaceous plants on the slopes and plateau plots for application in large scale reclamation.
- 2) Design and implement a noxious weed management program, which may include:
 - a. Manual weed removal; and/or
 - b. Application of herbicides.
- 3) Design and carry out a revegetation plan in the existing plots and slopes where high levels of mortality and/or bare ground has been observed. The revegetation plan will utilize plant species that have been identified as being the most successful. For tree species, saplings should be used instead of established trees to better understand whether saplings can withstand competition from the herbaceous ground cover.
- 4) Continue monitoring for active erosion and institute mitigating measures if significant erosion is observed. Mitigating measures include the following:
 - a. Reduce the slope angle to decrease the velocity of overland flow;
 - b. Apply erosion prevention materials such hydroseeding with ProGanics® Biotic Soil Media;
 - c. Spread mulch, straw, and woody debris, including logs, on the surface to slow the overland flow that occurs during periods of heavy precipitation and spring thaw;
 - d. Install straw wattles to decrease velocity of overland flow;
 - e. In the future, ensure that seeding activities are carried out immediately after landform construction; and/or
 - f. Scarify the surface to create microsites with enhanced moisture retention, seed germination, and reduced rates of overland flow ideal for plant establishment.
- 5) Continue to monitor root depth and spread to assess if tree roots penetrate the compacted clay layer.
- 6) Continue the soil sampling program within the plots to assess any changes in soil nutrient concentrations, and the effects of vegetation growth on soil properties.
- 7) Apply additional fertilizer to the plots with fertilized overburden. This application will help to establish whether an increase in plant available nutrient concentrations in overburden will have any impact on increasing the organic matter content and more closely mimic the natural soil profile.

8) Design and implement a sampling program for soil treatment types and vegetation material within the plots to assess ecotoxicity effects and bioaccumulation of metals in vegetation materials. This sampling program will help better understand if any migration or leaching of toxic compounds from the overburden and/or underlying waste rock is occurring.

Okane Consultants
B-1003-228-004
January 12, 2024
51

REFERENCES

- Alberta Government (2017). Rangeland Health Assessment for Grassland, Forest & Tame Pasture Field Workbook (Digital Alberta Government. Image). https://open.alberta.ca/publications/9781460127858
- Amec Foster Wheeler (2015). Revised Seed Mixes for the Rainy River Project and the Erosion Prevention / Sediment Control Plan (Rev. 1). Prepared for New Gold Inc.
- Ministry of Natural Resources (2023).White Ontario. and Forestry Spruce. https://www.ontario.ca/page/white-spruce
- Okane (2018). Mine Rainy River Mine Re-vegetation Program Failure Modes and Effects Analysis Workshop. Report No. 1003-13-003. Saskatoon.
- Okane (2019). Rainy River Mine Vegetation Trial Detailed Design. Report No. 1003-013. Saskatoon.

Okane Consultants January 12, 2024 52

CLOSURE

We trust information provided is satisfactory for your requirements. Please do not hesitate to contact the undersigned at 825-945-3691 for further information or questions.

Prepared by:

Scott Prodahl, B.Sc.

Senor Revegetation Specialist Sprodahl@Okane consultants.com825-945-3691

Reviewed by:

Gillian Allen, P.Eng. **Project Coordinator**

Appendix A

Plot Growth Indicator Measurements & General Health

Table A.1: Plot Growth Indicator Measurements & General Health for 2023 Survey.

Block	Soil Treatment	Vegetation Treatment	Date	Total	height	D	ВН		Hec	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
1	Thin Topsoil	Aspen	2023-09-05	272.4	18.1	18.7	0.5	2	-	3	-	5	10	100%	8	
1	Thin Topsoil	Black spruce	2023-09-05	158.0	2.2	8.2	1.5	3	-	-	-	5	8	100%	10	
1	Thin Topsoil	Black ash	2023-09-05	199.1	19.0	7.9	2.5	-	-	3	-	6	9	100%	10	
1	Thin Topsoil	Eastern white cedar	2023-09-05	-	-	-	-	-	-	9	-	-	9	100%	10	
1	Thin Topsoil	White spruce**	2023-09-05	-	-	-	-	-	-	-	-	5	5	100%	11	
1	Thin Topsoil	Jack pine	2023-09-05	-	-	-	-	-	-	-	-	-	0	100%	10	
1	Thin	Ground	2023-09-05	171.9	6.0	18.5	0.5	1	-	1	-	-	2	100%	4	Trees
	Topsoil	Cover Mix	2023-09-05	110	0	n/a	-	-	-	2	-	-	2			Shrubs
1	Thin Topsoil	Shrub Mix	2023-09-05	85.1	15.0	n/a	-	3	-	-	-	-	3	100%	11	
1	Thin Topsoil	Communi ty Mix	2023-09-05	-	-	-	-	-	-	-	-	-	0	100%	10	
1	Tilled Topsoil	Aspen	2023-09-05	262.7	12.7	19.2	2.4	3	-	3	-	4	10	100%	5	
1	Tilled Topsoil	Black spruce	2023-09-05	118.0	1.0	n/a		2	-	-	-	9	11	100%	n/a	
1	Tilled Topsoil	Black ash	2023-09-05	245.1	24.6	10.3	0.5			6		4	10	100%	7	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	neight	D	ВН		Hec	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
1	Tilled Topsoil	Eastern white cedar	2023-09-05	102.1	7.0	n/a				9			9	100%	n/a	
1	Tilled Topsoil	White spruce**	2023-09-05									7	7	100%	5	
1	Tilled Topsoil	Jack pine	2023-09-05										0	100%	5	
1	Tilled	Ground	2023-09-05										0	100%	10	Trees
	Topsoil	Cover Mix**	2023-09-05			n/a							0			Shrubs
1	Tilled Topsoil	Shrub Mix**	2023-09-05	84.5	25.1	n/a		3		1			4	100%	9	
1	Tilled Topsoil	Communi ty Mix	2023-09-05										0	40%	5	
1	Fertilized Overbur den	Aspen	2023-09-05	241.1	9.5	13.2	1.7	5		2		1	8	5%	n/a	
1	Fertilized Overbur den	Black spruce	2023-09-05	115.2	9.7	n/a		7		3			10	65%	4	
1	Fertilized Overbur den	Black ash	2023-09-05	216.5	28.2	12.1	3.7	8		1			9	55%	4	
1	Fertilized Overbur den	Eastern white cedar	2023-09-05	92.9	4.5	n/a				11			11	60%	4	
1	Fertilized Overbur den	White spruce	2023-09-05	69.4	5.4	n/a				7		2	9	60%	n/a	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	height	DI	ВН		Нес	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
1	Fertilized Overbur den	Jack pine	2023-09-05										0	65%	8	
1	Fertilized	Ground	2023-09-05	258.0	0	15.6	0			1			1	60%	3	Trees
	Overbur den	Cover Mix	2023-09-05			n/a							0			Shrubs
1	Fertilized Overbur den	Shrub Mix	2023-09-05	91.3	18.7	n/a		2		2			4	30%	n/a	
1	Fertilized Overbur den	Communi ty Mix	2023-09-05										0	50%	n/a	
1	Control	Aspen	2023-09-05	288.3	24.6	20.6	4.9	5		3		1	9	5%	4	
1	Control	Black spruce	2023-09-05	103.5	9.8	n/a		2		8			10	5%	n/a	
1	Control	Black ash	2023-09-05	218.3	32.3	12.4	2.5	5		5			10	100%	n/a	
1	Control	Eastern white cedar	2023-09-05	105.6	2.5	n/a				10			10	75%	n/a	
1	Control	White spruce	2023-09-05									7	7	75%	5	
1	Control	Jack pine	2023-09-05										0	75%	9	
1	Control	Ground	2023-09-05	270.0	4.0	18.2		2					2	30%	n/a	Trees
		Cover Mix	2023-09-05			n/a				2		2	4			Shrubs
1	Control	Shrub Mix	2023-09-05	72.3	41.6	n/a		2		2			4	30%	4	
1	Control	Communi ty Mix	2023-09-05										0	75%	n/a	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	neight	DI	ВН		Нес	alth Cl	neck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	\$/D	D	(#)	(%)	Density Distribution	
2	Thin Topsoil	Aspen	2023-09-05	265.6	5.2	16.0	0.8	4		3		3	10	100%	7	
2	Thin Topsoil	Black spruce	2023-09-05									8	8	100%	10	
2	Thin Topsoil	Black ash	2023-09-05	208.5	7.8	7.6	0.9			10			10	100%	n/a	
2	Thin Topsoil	Eastern white cedar	2023-09-05	111.3	8.3	n/a				7		2	9	100%	8	
2	Thin Topsoil	White spruce**	2023-09-05									5	5	100%	2	
2	Thin Topsoil	Jack pine	2023-09-05										0	95%	2	
2	Thin	Ground	2023-09-05									2	2	95%	8	Trees
	Topsoil	Cover Mix	2023-09-05	68.4	19	n/a		2					2			Shrubs
2	Thin Topsoil	Shrub Mix**	2023-09-05	108.7	19.3	n/a		1		2		1	4	95%	7	
2	Thin Topsoil	Communi ty Mix	2023-09-05										0	95%	2	
2	Tilled Topsoil	Aspen	2023-09-05	249.0	0.0	21.0	0.0			1		6	7	100%	6	
2	Tilled Topsoil	Black spruce**	2023-09-05	134.8	11.4	4.9	1	2		1		5	8	100%	4	
2	Tilled Topsoil	Black ash	2023-09-05	207.3	3.7	8.3	2.1			3		7	10	95%	n/a	
2	Tilled Topsoil	Eastern white cedar	2023-09-05	94.5	14.6	n/a				10			10	100%	5	

	1	1		1		1										
Block	Soil Treatment	Vegetation Treatment	Date	Total I	height	D	ВН		Hec	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
2	Tilled Topsoil	White spruce**	2023-09-05									10	10	100%	n/a	
2	Tilled Topsoil	Jack pine	2023-09-05										0	75%	n/a	
2	Tilled	Ground	2023-09-05	235	0	15	0			1		1	2	100%	5	Trees
	Topsoil	Cover Mix**	2023-09-05			n/a							0			Shrubs
2	Tilled Topsoil	Shrub Mix**	2023-09-05	75.0	0.0	n/a		1					1	25%	6	
2	Tilled Topsoil	Communi ty Mix	2023-09-05										0	100%	n/a	
2	Fertilized Overbur den	Aspen	2023-09-05	241.8	8.8	16.7	0.5	6		3		1	10	85%	n/a	
2	Fertilized Overbur den	Black spruce	2023-09-05	109.6	4.2	n/a				10			10	75%	7	
2	Fertilized Overbur den	Black ash	2023-09-05	196.2	12.8	9.9	1.4	4		6			10	50%	n/a	
2	Fertilized Overbur den	Eastern white cedar	2023-09-05	86.8	12.3	n/a				10			10	90%	7	
2	Fertilized Overbur den	White spruce	2023-09-05									8	8	85%	8	
2	Fertilized Overbur den	Jack pine	2023-09-05										0	90%	n/a	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	neight	D	ВН		Нес	alth C	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
2	Fertilized	Ground	2023-09-05	129.0	0.0	n/a				1		1	2	95%	6	Trees
	Overbur den	Cover Mix	2023-09-05	104.5	1.5	n/a				2			2			Shrubs
2	Fertilized Overbur den	Shrub Mix	2023-09-05	101.0	11.7	n/a		1		3			4	75%	5	
2	Fertilized Overbur den	Communi ty Mix	2023-09-05										0	85%	n/a	
2	Control	Aspen	2023-09-05	262.1	22.2	16.6	1.1	7		3			10	45%	4	
2	Control	Black spruce	2023-09-05	118.3	2.4	n/a		8		2			10	50%	4	
2	Control	Black ash	2023-09-05	205.9	40.9	9.5	1.7	10					10	25%	n/a	
2	Control	Eastern white cedar	2023-09-05	104.3	2.5	n/a				10			10	80%	4	
2	Control	White spruce	2023-09-05	67.9	4.2	n/a				6		4	10	70%	4	
2	Control	Jack pine	2023-09-05										0	75%	4	
2	Control	Ground	2023-09-05	50.0	0	n/a						2	2	25%	n/a	
		Cover Mix	2023-09-05			n/a				1	1	2	4			
2	Control	Shrub Mix	2023-09-05	109.8	31.5	n/a		3		1			4	65%	4	
2	Control	Communi ty Mix	2023-09-05										0	100%	8	
3	Thin Topsoil	Aspen	2023-09-05	253.9	14.5	19.2	1.9	5		4		2	11	100%	11	
3	Thin Topsoil	Black spruce**	2023-09-05									9	9	100%	11	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	neight	DI	ВН		Нес	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- \$D (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	S/D	D	(#)	(%)	Density Distribution	
3	Thin Topsoil	Black ash	2023-09-05	243.1	10.0	12.7	2.0	5		3		2	10	100%	8	
3	Thin Topsoil	Eastern white cedar	2023-09-05	112.9	5.4	n/a				10			10	100%	9	
3	Thin Topsoil	White spruce	2023-09-05	-	-	-	-	-	-	-		7	7	100%	4	
3	Thin Topsoil	Jack pine	2023-09-05										0	100%	8	
3	Thin	Ground	2023-09-05									2	2	100%	n/a	Tree
	Topsoil	Cover Mix	2023-09-05	41.0	0.0	n/a		1					1			Shrubs
3	Thin Topsoil	Shrub Mix	2023-09-05	81.5	14.4	n/a		3					3	100%	4	
3	Thin Topsoil	Communi ty Mix	2023-09-05										0	100%	10	
3	Tilled Topsoil	Aspen	2023-09-05	269.6	26.7	18.4	2.3	6		2		2	10	100%	11	
3	Tilled Topsoil	Black spruce**	2023-09-05	263.8	11.2	16.0	1.0	10					10	65%	8	
3	Tilled Topsoil	Black ash	2023-09-05	206.7	54.8	8.7	5.7	3		5			8	100%	5	
3	Tilled Topsoil	Eastern white cedar	2023-09-05	92.1	6.9	n/a				9			9	100%	8	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	neight	DI	ВН		Нес	ılth Cl	neck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	\$/D	D	(#)	(%)	Density Distribution	
3	Tilled Topsoil	White spruce**	2023-09-05	135	0	6.2	0			1		9	10	100%	11	Black Spruce was planted instead of White
3	Tilled Topsoil	Jack pine	2023-09-05										0	100%	5	
3	_Tilled	Ground	2023-09-05	176.2	77.5	26.4	0.0	1		1		1	3	100%	11	Trees
	Topsoil	Cover Mix	2023-09-05			n/a							0			Shrubs
3	Tilled Topsoil	Shrub Mix	2023-09-05	79.5	1.5	n/a		2				2	4	100%	8	
3	Tilled Topsoil	Communi ty Mix	2023-09-05										0	40%	5	
3	Fertilized Overbur den	Aspen	2023-09-05	246.0	0.0	18.8	0.0	5		5			10	100%	5	
3	Fertilized Overbur den	Black spruce**	2023-09-05									10	10	100%	6	
3	Fertilized Overbur den	Black ash	2023-09-05	184.9	63.4	10.0	1.3	7		2		1	10	100%	11	
3	Fertilized Overbur den	Eastern white cedar	2023-09-05	104.8	5.7	n/a				7			7	100%	11	
3	Fertilized Overbur den	White spruce**	2023-09-05	52.0	0	n/a				1		4	5	100%	7	

Block	Soil Treatment	Vegetation Treatment	Date	Total I	height	DI	ВН		Нес	alth Cl	heck		Total Count	Ground Cover	Noxious Weeds	Comment
				Mean (cm)	+/- SD (cm)	Mean (mm)	+/- SD (mm)	Н	H/S	S	\$/D	D	(#)	(%)	Density Distribution	
3	Fertilized Overbur den	Jack pine	2023-09-05										0	100%	6	
3	Fertilized	Ground	2023-09-05	252.0	4.0	14.0	1.0	1		1			2	100%	8	Trees
	Overbur den	Cover Mix	2023-09-05			n/a							0			Shrubs
3	Fertilized Overbur den	Shrub Mix	2023-09-05	116.0	2.0	n/a		2		2			4	100%	7	
3	Fertilized Overbur den	Communi ty Mix	2023-09-05										0	100%	8	
3	Control	Aspen	2023-09-05	267.2	21.6	15.9	1.7	6		4			10	80%	4	
3	Control	Black spruce	2023-09-05	121.6	16.1	6.9	0.0	2		3		5	10	80%	8	
3	Control	Black ash	2023-09-05	172.1	57.3	10.7	2.1	5		5			10	35%	n/a	
3	Control	Eastern white cedar	2023-09-05	96.7	7.8	n/a					11		11	100%	8	
3	Control	White spruce	2023-09-05	55.5	10.5	n/a				2		6	8	100%	8	
3	Control	Jack pine	2023-09-05										0		6	
3	Control	Ground	2023-09-05	208.0	0.0	12.0	0					2	2	100%	n/a	Trees
		Cover Mix	2023-09-05	24.0	1	n/a				2			2			Shrubs
3	Control	Shrub Mix**	2023-09-05	97.6	35.3	n/a		4					4	100%	7	
3	Control	Communi ty Mix	2023-09-05										0	95%	5	

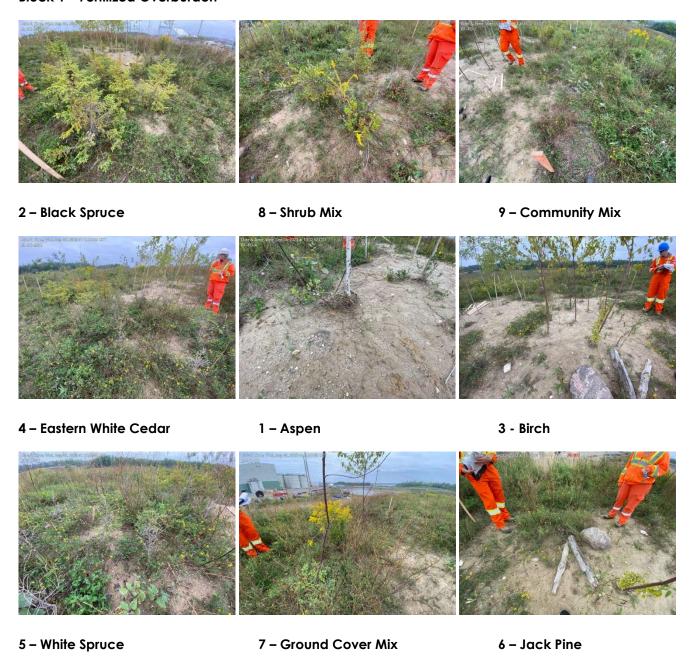
New Gold Inc.

Rainy River Mine - 2023 Vegetation Trial Monitoring Summary Rev0

- No trees or shrubs identified in plot
- * Only one tree measured or tall enough for DBH, no SD given
- ** Dead species were not measured


Appendix B

Photos of Tree Plots by Block and Soil Treatment


Block 1 – Thin Topsoil

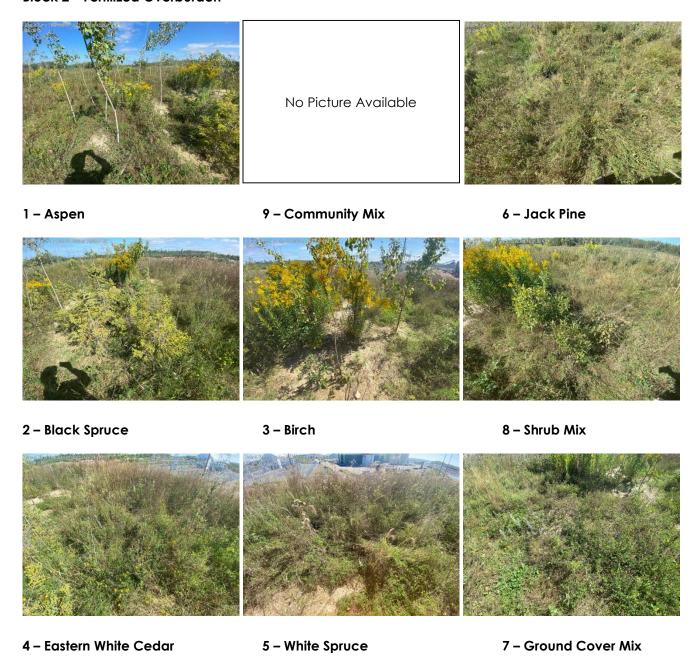
Block 1 – Tilled Topsoil

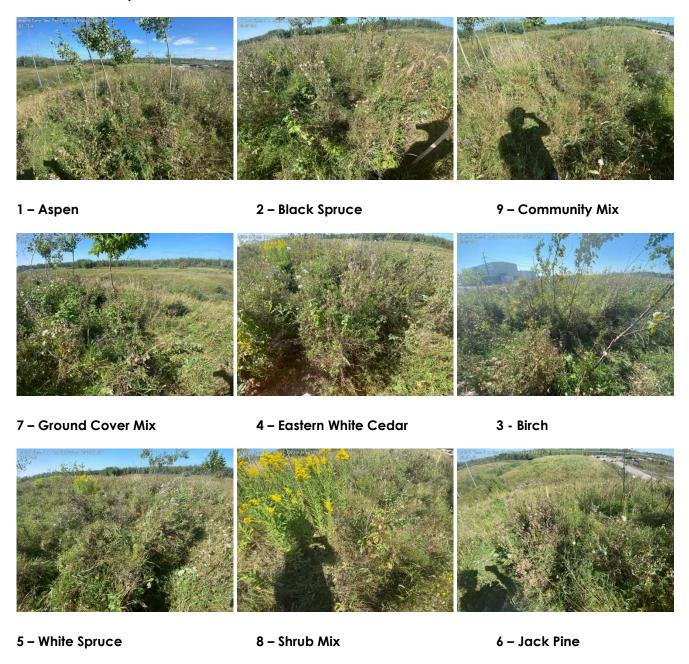
Block 1 – Fertilized Overburden

Block 1 - Control

3 – Birch 1 – Aspen 9 – Community Mix


Block 2 – Thin Topsoil


Block 2 - Tilled Topsoil


Block 2 - Control

Block 2 – Fertilized Overburden

Block 3 - Tilled Topsoil

Block 3 – Thin Topsoil

Block 3 - Control

Block 3 – Fertilized Overburden

Appendix C

Analytical Lab Tables

Rainy River Mine - Vegetation Trials Project #: 1003-228 Lab Report(s): C371213V1

			-	$\mathbf{v}/\mathbf{v}/$	100	2.1						epon(s).	C371213V
	Sample Description		Phy	sical Para	mters	125	\mathbf{M}			Soil Nu	utrients		
Sample Name	Depth (mbgs)	Da l e	% sand by hydrometer	% silt by hydrometer	Clay Content	Texture	Moisture	Available (NH4F) Nitrate (N)	Available (NH4F) Phosphorus (P)	Available (NH4OAc) Potassium (K)	Available (CaCl2) Sulphur (S)	Organic Matter	Total Organic Carbon (C)
Plateu Trial Plots			%	%	%	N/A	%	mg/kg	mg/kg	mg/kg	mg/kg	%	%
						CLAY		0.7		212			0.0
THIN TOPSOIL	0 - 0.2	2023-09-07	34	27	39	LOAM	19	9.7	11	210	5.6	6.6	3.8
THIN TOPSOIL	0.3 - 0.5	2023-09-07	47	30	23	LOAM	8.7	<4.0	6.0	110	3.0	0.54	0.31
TILLED TOPSOIL	0 - 0.2	2023-09-07	34	27	39	CLAY LOAM	23	20	11	220	9.0	5.8	3.4
TILLED TOPSOIL	0.3 - 0.5	2023-09-07	34	33	33	CLAY LOAM	11	20	2.8	140	6.4	2.0	1.2
FERTILIZED OVERURDEN	0 - 0.2	2023-09-07	29	35	37	CLAY LOAM	15	<4.0	2.6	170	5.6	1.0	0.59
FERTILIZED OVERURDEN	0.3 - 0.5	2023-09-07	30	29	41	CLAY	15	<4.0	1.6	190	16	0.79	0.46
CONTROL	0 - 0.2	2023-09-07	38	29	34	CLAY LOAM	14	<4.0	2.6	180	190	0.98	0.57
CONTROL	0.3 - 0.5	2023-09-07	37	29	34	CLAY LOAM	14	<20	1.9	180	42	0.73	0.43
BKG 0-0.2	0 - 0.2	2023-09-07	43	29	27	LOAM	14	<4.0	18	130	4.1	3.1	1.8
BKG 0.3-0.5	0.3 - 0.5	2023-09-07	34	19	47	CLAY	12	<4.0	95	270	2.1	0.30	0.17

Table C.2. Soil Chara New Gold Corp.	cterization - Salintiy Pc	arameters .				1	ne	ev	٧g	F (1)	lo								Rainy		Project :	etation Trials #: 1003-228 C371213V1
	Sample Description									J.		Salir	nity Param	aters								
						Calcu	lated Par	ameters								Soluc	able Paran	neters				
Sample ID	Depth (mbgs)	Date	Anion Sum	Cation Sum	Cation/EC Ratio	Calculated Calcium (Ca)	Calculated Magnesium (Mg)	Calculated Sodium (Na)	Calculated Potassium (K)	Calculated Chloride (CI)	Calculated Sulphate (SO4)	Soluble Chloride (CI)	Soluble Conductivity	Soluble (CaCl2) pH	Sodium Adsorption Ratio	Soluble Calcium (Ca)	Soluble Magnesium (Mg)	Soluble Sodium (Na)	Soluble Potassium (K)	Saturation %	Soluble Sulphate (SO4)	Theoretical Gypsum Requirement
			meq/L	meq/L	N/A	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	dS/m	pН	N/A	mg/L	mg/L	mg/L	mg/L	%	mg/L	tonnes/ha
THIN TOPSOIL	0 - 0.2	2023-09-07	0.64	9.1	10	/2	21	9.8	3.6	<5.9	18	<10	0.78	7.29	0.36	110	36	17	6.2	59	31	<0.20
THIN TOPSOIL	0.3 - 0.5	2023-09-07	0.64	3.7	12	62 12	3.8	9.0	1.2	<3.6	8.7	<10	0.78	7.54	0.36	33	11	25	3.4	36	25	<0.20
TILLED TOPSOIL	0.5 - 0.5	2023-07-07	1.3	8.3	12	55	18	11	4.1	6.9	27	12	0.71	7.34	0.45	95	31	20	7.1	58	47	<0.20
TILLED TOPSOIL	0.3 - 0.5	2023-09-07	1.4	4.9	11	20	6.7	8.7	1.3	5.4	21	13	0.43	7.50	0.43	50	16	21	3.3	41	50	<0.20
FERTILIZED OVERURDEN	0 - 0.2	2023-09-07	1.2	3.7	11	16	5.0	9.6	1.3	6.9	16	15	0.34	7.51	0.79	36	11	21	2.8	45	36	<0.20
FERTILIZED OVERURDEN	0.3 - 0.5	2023-09-07	2.8	5.1	11	23	8.0	13	2.0	<4.9	64	<10	0.45	7.51	0.88	48	17	28	4.1	49	130	<0.20
CONTROL	0 - 0.2	2023-09-07	21	23	12	130	47	15	3.1	<4.8	480	<10	1.9	7.53	0.42	270	97	32	6.4	48	1000	<0.20
CONTROL	0.3 - 0.5	2023-09-07	6.2	8.1	11	41	13	13	2.1	<4.6	140	<10	0.75	7.64	0.64	89	29	27	4.6	46	300	<0.20
BKG 0-0.2	0 - 0.2	2023-09-07	0.64	5.4	12	21	10	6.4	1.8	<4.1	13	<10	0.45	6.46	0.45	52	24	16	4.4	41	31	<0.20
BKG 0.3-0.5	0.3 - 0.5	2023-09-07	0.34	1.1	11	2.8	1.0	7.4	< 0.63	<4.8	7.9	<10	0.10	6.79	1.4	5.8	2.1	15	<1.3	48	16	< 0.20

Appendix D

Laboratory Data Reports

Your Project #: 1002-228

Site Location: RAINY RIVER MINE - VEG TRIALS

Your C.O.C. #: 1/1

Attention: Scott Prodahl

Okane Consultants #1900 - 736 6 Ave SW Calgary, AB CANADA T2P 3T7

Report Date: 2023/10/02

Report #: R3404130 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371213 Received: 2023/09/08, 12:22

Sample Matrix: Soil # Samples Received: 10

·		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Cation/EC Ratio (1)	10	N/A	2023/09/17		Auto Calc
Chloride (Soluble) (1)	10	2023/09/16	2023/09/17	AB SOP-00033 / AB SOP- 00020	SM 24-4500-CI-E m
Conductivity @25C (Soluble) (1)	10	2023/09/17	2023/09/17	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
Sum of Cations, Anions (1)	10	N/A	2023/09/17		Auto Calc
Potassium (Available) (1)	10	2023/10/02	2023/10/02	CAL SOP-00153 / AB SOP- 00042	EPA 6010d R5 m
Moisture (1)	10	N/A	2023/09/15	AB SOP-00002	CCME PHC-CWS m
Available NO3 (N) (1)	10	2023/09/11	2023/10/02		Auto Calc
Organic Matter by combustion (1)	7	N/A	2023/09/15		Auto Calc
Organic Matter by combustion (1)	3	N/A	2023/09/18		Auto Calc
Phosphorus (Available by ICP) (1)	9	2023/09/28	2023/09/28	CAL SOP-00152 / AB SOP- 00042	EPA 6010d R5 m
Phosphorus (Available by ICP) (1)	1	2023/09/28	2023/09/29	CAL SOP-00152 / AB SOP- 00042	EPA 6010d R5 m
pH @25C (1:2 Calcium Chloride Extract) (1)	10	2023/09/14	2023/09/14	AB SOP-00033 / AB SOP- 00006	SM 24 4500 H+B m
Sodium Adsorption Ratio (1)	10	N/A	2023/09/17		Auto Calc
Soluble Ions (1)	10	2023/09/16	2023/09/17	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Sulphur (Available) (1)	10	2023/09/13	2023/09/13	AB SOP-00029 / AB SOP- 00042	EPA 6010d R5 m
Soluble Paste (1)	10	2023/09/16	2023/09/16	AB SOP-00033	Carter 2nd ed 15.2 m
Soluble Ions Calculation (1)	10	N/A	2023/09/14		Auto Calc
Total Organic Carbon LECO Method (1)	10	N/A	2023/09/15	CAL SOP-00243	LECO 203-821-498 m
Texture by Hydrometer (1)	10	N/A	2023/09/14	AB SOP-00030	Carter 2nd ed 55.3 m
Texture Class (1)	10	N/A	2023/09/14		Auto Calc
Theoretical Gypsum Requirement (1, 2)	10	N/A	2023/09/17		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Your Project #: 1002-228

Site Location: RAINY RIVER MINE - VEG TRIALS

Your C.O.C. #: 1/1

Attention: Scott Prodahl

Okane Consultants #1900 - 736 6 Ave SW Calgary, AB CANADA T2P 3T7

Report Date: 2023/10/02

Report #: R3404130 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C371213 Received: 2023/09/08, 12:22

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) TGR calculation is based on a theoretical SAR of 4. Salt Contamination and Assessment and remediation guideline 2001 recommended SAR is ranging 4-8. TGR is reported in tonnes/ha.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (204) 772-7276

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Manitoba Environmental laboratory operations.

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		BYR143		BYR144		BYR145		
Sampling Date		2023/09/07		2023/09/07		2023/09/07		
COC Number		1/1		1/1		1/1		
	UNITS	THIN TOPSOIL 0-0.2	RDL	THIN TOPSOIL 0.3-0.5	RDL	TILLED TOPSOIL 0-0.2	RDL	QC Batch
Calculated Parameters								
Anion Sum	meq/L	0.64	N/A	0.51	N/A	1.3	N/A	B102969
Cation Sum	meq/L	9.1	N/A	3.7	N/A	8.3	N/A	B102969
Cation/EC Ratio	N/A	12	0.10	11	0.10	12	0.10	B102962
Available (NH4F) Nitrate (N)	mg/kg	9.7	4.0	<4.0	4.0	20	4.0	B103014
Organic Matter	%	6.6	0.035	0.54	0.035	5.8	0.035	B103015
Calculated Calcium (Ca)	mg/kg	62	0.88	12	0.53	55	0.87	B102977
Calculated Magnesium (Mg)	mg/kg	21	0.59	3.8	0.36	18	0.58	B102977
Calculated Sodium (Na)	mg/kg	9.8	1.5	9.0	0.89	11	1.4	B102977
Calculated Potassium (K)	mg/kg	3.6	0.76	1.2	0.46	4.1	0.75	B102977
Calculated Chloride (Cl)	mg/kg	<5.9	5.9	<3.6	3.6	6.9	5.8	B102977
Calculated Sulphate (SO4)	mg/kg	18	2.9	8.7	1.8	27	2.9	B102977
Nutrients	•						•	•
Available (NH4F) Phosphorus (P)	mg/kg	11	1.0	6.0	1.0	11	1.0	B128422
Available (NH4OAc) Potassium (K)	mg/kg	210	2.0	110	2.0	220	2.0	B133862
Available (CaCl2) Sulphur (S)	mg/kg	5.6	2.0	3.0	2.0	9.0	2.0	B106139
Soluble Parameters							•	
Soluble Chloride (Cl)	mg/L	<10	10	<10	10	12	10	B111208
Soluble Conductivity	dS/m	0.78	0.020	0.33	0.020	0.71	0.020	B111288
Soluble (CaCl2) pH	рН	7.29	N/A	7.54	N/A	7.34	N/A	B105967
Sodium Adsorption Ratio	N/A	0.36	0.10	0.98	0.10	0.45	0.10	B102975
Soluble Calcium (Ca)	mg/L	110	1.5	33	1.5	95	1.5	B111261
Soluble Magnesium (Mg)	mg/L	36	1.0	11	1.0	31	1.0	B111261
Soluble Sodium (Na)	mg/L	17	2.5	25	2.5	20	2.5	B111261
Soluble Potassium (K)	mg/L	6.2	1.3	3.4	1.3	7.1	1.3	B111261
Saturation %	%	59	N/A	36	N/A	58	N/A	B105965
Soluble Sulphate (SO4)	mg/L	31	5.0	25	5.0	47	5.0	B111261
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	<0.20	0.20	<0.20	0.20	B102983
RDL = Reportable Detection Limit								•

RDL = Reportable Detection Limit

Report Date: 2023/10/02

Okane Consultants Client Project #: 1002-228

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		BYR146		BYR147		BYR148		
Sampling Date		2023/09/07		2023/09/07		2023/09/07		
COC Number		1/1		1/1		1/1		
	UNITS	TILLED TOPSOIL 0.3-0.5	RDL	OVERURDEN 0-0.2	RDL	OVERURDEN 0.3-0.5	RDL	QC Batch
Calculated Parameters								
Anion Sum	meq/L	1.4	N/A	1.2	N/A	2.8	N/A	B102969
Cation Sum	meq/L	4.9	N/A	3.7	N/A	5.1	N/A	B102969
Cation/EC Ratio	N/A	11	0.10	11	0.10	11	0.10	B102962
Available (NH4F) Nitrate (N)	mg/kg	20	4.0	<4.0	4.0	<4.0	4.0	B103014
Organic Matter	%	2.0	0.035	1.0	0.035	0.79	0.035	B103015
Calculated Calcium (Ca)	mg/kg	20	0.61	16	0.68	23	0.73	B102977
Calculated Magnesium (Mg)	mg/kg	6.7	0.41	5.0	0.45	8.0	0.49	B102977
Calculated Sodium (Na)	mg/kg	8.7	1.0	9.6	1.1	13	1.2	B102977
Calculated Potassium (K)	mg/kg	1.3	0.53	1.3	0.59	2.0	0.63	B102977
Calculated Chloride (CI)	mg/kg	5.4	4.1	6.9	4.5	<4.9	4.9	B102977
Calculated Sulphate (SO4)	mg/kg	21	2.0	16	2.3	64	2.4	B102977
Nutrients			•					
Available (NH4F) Phosphorus (P)	mg/kg	2.8	1.0	2.6	1.0	1.6	1.0	B128422
Available (NH4OAc) Potassium (K)	mg/kg	140	2.0	170	2.0	190	2.0	B133862
Available (CaCl2) Sulphur (S)	mg/kg	6.4	2.0	5.6	2.0	16	2.0	B106139
Soluble Parameters	•		•	•		•		•
Soluble Chloride (Cl)	mg/L	13	10	15	10	<10	10	B111208
Soluble Conductivity	dS/m	0.43	0.020	0.34	0.020	0.45	0.020	B111288
Soluble (CaCl2) pH	рН	7.50	N/A	7.51	N/A	7.51	N/A	B105967
Sodium Adsorption Ratio	N/A	0.67	0.10	0.79	0.10	0.88	0.10	B102975
Soluble Calcium (Ca)	mg/L	50	1.5	36	1.5	48	1.5	B111261
Soluble Magnesium (Mg)	mg/L	16	1.0	11	1.0	17	1.0	B111261
Soluble Sodium (Na)	mg/L	21	2.5	21	2.5	28	2.5	B111261
Soluble Potassium (K)	mg/L	3.3	1.3	2.8	1.3	4.1	1.3	B111261
Saturation %	%	41	N/A	45	N/A	49	N/A	B105965
Soluble Sulphate (SO4)	mg/L	50	5.0	36	5.0	130	5.0	B111261
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	<0.20	0.20	<0.20	0.20	B102983
DDI - Departable Detection Limit		·		<u> </u>		·		

RDL = Reportable Detection Limit

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		BYR149		BYR150		BYR151		BYR152		
Sampling Date		2023/09/07		2023/09/07		2023/09/07		2023/09/07		
COC Number		1/1		1/1		1/1		1/1		
	UNITS	CONTROL 0-0.2	RDL	CONTROL 0.3-0.5	RDL	BKG 0-0.2	RDL	BKG 0.3-0.5	RDL	QC Batch
Calculated Parameters										
Anion Sum	meq/L	21	N/A	6.2	N/A	0.64	N/A	0.34	N/A	B102969
Cation Sum	meq/L	23	N/A	8.1	N/A	5.4	N/A	1.1	N/A	B102969
Cation/EC Ratio	N/A	12	0.10	11	0.10	12	0.10	11	0.10	B102962
Available (NH4F) Nitrate (N)	mg/kg	<4.0	4.0	<20	20	<4.0	4.0	<4.0	4.0	B103014
Organic Matter	%	0.98	0.035	0.73	0.035	3.1	0.035	0.30	0.035	B103015
Calculated Calcium (Ca)	mg/kg	130	0.72	41	0.69	21	0.62	2.8	0.72	B102977
Calculated Magnesium (Mg)	mg/kg	47	0.48	13	0.46	10	0.41	1.0	0.48	B102977
Calculated Sodium (Na)	mg/kg	15	1.2	13	1.2	6.4	1.0	7.4	1.2	B102977
Calculated Potassium (K)	mg/kg	3.1	0.62	2.1	0.60	1.8	0.53	<0.63	0.63	B102977
Calculated Chloride (Cl)	mg/kg	<4.8	4.8	<4.6	4.6	<4.1	4.1	<4.8	4.8	B102977
Calculated Sulphate (SO4)	mg/kg	480	2.4	140	2.3	13	2.1	7.9	2.4	B102977
Nutrients	•			•		-				-
Available (NH4F) Phosphorus (P)	mg/kg	2.6	1.0	1.9	1.0	18	1.0	95	1.0	B128422
Available (NH4OAc) Potassium (K)	mg/kg	180	2.0	180	2.0	130	2.0	270	2.0	B133862
Available (CaCl2) Sulphur (S)	mg/kg	190	2.0	42	2.0	4.1	2.0	2.1	2.0	B106139
Soluble Parameters										
Soluble Chloride (Cl)	mg/L	<10	10	<10	10	<10	10	<10	10	B111208
Soluble Conductivity	dS/m	1.9	0.020	0.75	0.020	0.45	0.020	0.10	0.020	B111288
Soluble (CaCl2) pH	рН	7.53	N/A	7.64	N/A	6.46	N/A	6.79	N/A	B105967
Sodium Adsorption Ratio	N/A	0.42	0.10	0.64	0.10	0.45	0.10	1.4	0.10	B102975
Soluble Calcium (Ca)	mg/L	270	1.5	89	1.5	52	1.5	5.8	1.5	B111261
Soluble Magnesium (Mg)	mg/L	97	1.0	29	1.0	24	1.0	2.1	1.0	B111261
Soluble Sodium (Na)	mg/L	32	2.5	27	2.5	16	2.5	15	2.5	B111261
Soluble Potassium (K)	mg/L	6.4	1.3	4.6	1.3	4.4	1.3	<1.3	1.3	B111261
Saturation %	%	48	N/A	46	N/A	41	N/A	48	N/A	B105965
Soluble Sulphate (SO4)	mg/L	1000	5.0	300	5.0	31	5.0	16	5.0	B111261
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	B102983
RDL = Reportable Detection Limit										•

RDL = Reportable Detection Limit

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

PHYSICAL TESTING (SOIL)

Bureau Veritas ID		BYR143	BYR144		BYR145		
Sampling Date		2023/09/07	2023/09/07		2023/09/07		
COC Number		1/1	1/1		1/1		
	UNITS	THIN TOPSOIL 0-0.2	THIN TOPSOIL 0.3-0.5	QC Batch	TILLED TOPSOIL 0-0.2	RDL	QC Batch
Physical Properties							
% sand by hydrometer	%	34	47	B106202	34	2.0	B107269
% silt by hydrometer	%	27	30	B106202	27	2.0	B107269
Clay Content	%	39	23	B106202	39	2.0	B107269
Texture	N/A	CLAY LOAM	LOAM	B102840	CLAY LOAM	N/A	B102840
Moisture	%	19	8.7	B108214	23	0.30	B108214
RDL = Reportable Detection	n Limit		•				•

N/A = Not Applicable

Bureau Veritas ID		BYR146	BYR147		BYR148	BYR149		
Sampling Date		2023/09/07	2023/09/07		2023/09/07	2023/09/07		
COC Number		1/1	1/1		1/1	1/1		
	UNITS	TILLED TOPSOIL 0.3-0.5	OVERURDEN 0-0.2	QC Batch	OVERURDEN 0.3-0.5	CONTROL 0-0.2	RDL	QC Batch
Physical Properties								
% sand by hydrometer	%	34	29	B106202	30	38	2.0	B107269
% silt by hydrometer	%	33	35	B106202	29	29	2.0	B107269
Clay Content	%	33	37	B106202	41	34	2.0	B107269
Texture	N/A	CLAY LOAM	CLAY LOAM	B102840	CLAY	CLAY LOAM	N/A	B102840
Moisture	%	11	15	B108214	15	14	0.30	B108214

RDL = Reportable Detection Limit

N/A = Not Applicable

Bureau Veritas ID		BYR150		BYR151	BYR152		
Sampling Date		2023/09/07		2023/09/07	2023/09/07		
COC Number		1/1		1/1	1/1		
	UNITS	CONTROL 0.3-0.5	QC Batch	BKG 0-0.2	BKG 0.3-0.5	RDL	QC Batch
Physical Properties							
% sand by hydrometer	%	37	B106202	43	34	2.0	B107269
% silt by hydrometer	%	29	B106202	29	19	2.0	B107269
Clay Content	%	34	B106202	27	47	2.0	B107269
Texture	N/A	CLAY LOAM	B102840	LOAM	CLAY	N/A	B102840
Moisture	%	14	B108214	14	12	0.30	B108214

RDL = Reportable Detection Limit

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

MISCELLANEOUS (SOIL)

Bureau Veritas ID		BYR143	BYR144	BYR145	BYR146		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/07		
COC Number		1/1	1/1	1/1	1/1		
	UNITS	THIN TOPSOIL 0-0.2	THIN TOPSOIL 0.3-0.5	TILLED TOPSOIL 0-0.2	TILLED TOPSOIL 0.3-0.5	RDL	QC Batch
Misc. Inorganics							
Total Organic Carbon (C)	%	3.8	0.31	3.4	1.2	0.050	B109604
RDL = Reportable Detection	Limit						

Bureau Veritas ID		BYR147	BYR148	BYR149	BYR150	BYR151		
Sampling Date		2023/09/07	2023/09/07	2023/09/07	2023/09/07	2023/09/07		
COC Number		1/1	1/1	1/1	1/1	1/1		
	UNITS	OVERURDEN 0-0.2	OVERURDEN 0.3-0.5	CONTROL 0-0.2	CONTROL 0.3-0.5	BKG 0-0.2	RDL	QC Batch
Misc. Inorganics		•	•					
Total Organic Carbon (C)	%	0.59	0.46	0.57	0.43	1.8	0.050	B109604
RDL = Reportable Detection	Limit	•			•	•	•	

Bureau Veritas ID		BYR152		
Sampling Date		2023/09/07		
COC Number		1/1		
	UNITS	BKG 0.3-0.5	RDL	QC Batch
Misc. Inorganics				
Total Organic Carbon (C)	%	0.17	0.050	B109604
RDL = Reportable Detection I				

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

GENERAL COMMENTS

Results relate only to the items tested.

Report Date: 2023/10/02

Okane Consultants

Client Project #: 1002-228

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

QUALITY ASSURANCE REPORT

01/06			QUALITI ASSUM					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
B105965	STB	QC Standard	Saturation %	2023/09/16	value	106	%	75 - 125
B105965	STB	RPD [BYR150-01]	Saturation %	2023/09/16	5.5	100	%	12
B105967	HAP	QC Standard	Soluble (CaCl2) pH	2023/09/14	5.5	100	%	97 - 103
B105967	HAP	Spiked Blank	Soluble (CaCl2) pH	2023/09/14		100	%	97 - 103
B105967	HAP	RPD [BYR150-01]	Soluble (CaCl2) pH	2023/09/14	0.16	100	%	N/A
B105307 B106139	VSC	Matrix Spike	Available (CaCl2) Sulphur (S)	2023/09/13	0.10	94	%	75 - 125
B106133	VSC	QC Standard	Available (CaCl2) Sulphur (S)	2023/09/13		102	%	75 - 125
B106133	VSC	Spiked Blank	Available (CaCl2) Sulphur (S)	2023/09/13		95	%	80 - 120
B106139	VSC	Method Blank	Available (CaCl2) Sulphur (S)	2023/09/13	<2.0	93	mg/kg	80 - 120
B106139	VSC	RPD	Available (CaCl2) Sulphur (S)	2023/09/13	0.69		%	35
B106202	RDL	QC Standard	% sand by hydrometer	2023/09/14	0.05	97	%	75 - 1 25
D100202	NDL	QC Standard	% silt by hydrometer	2023/09/14		105	%	75 - 125
			Clay Content	2023/09/14		101	%	75 - 125 75 - 125
B106202	RDL	RPD	% sand by hydrometer	2023/09/14	0.095	101	%	30
D100202	NDL	KFD	% silt by hydrometer	2023/09/14	2.2		%	30
			Clay Content	2023/09/14	1.9		% %	30
B107269	RDL	QC Standard	% sand by hydrometer	2023/09/14	1.9	97	% %	75 - 125
B107209	NDL	QC Stallualu	% silt by hydrometer	2023/09/14		112	% %	75 - 125 75 - 125
			Clay Content	2023/09/14		94	% %	75 - 125 75 - 125
D107360	RDL	RPD	% sand by hydrometer	2023/09/14	1.4	94		30
B107269	KDL	KPD	% saild by hydrometer % silt by hydrometer	2023/09/14	14		% %	
			• •	2023/09/14	8.9 8.0		% %	30 30
D100314	DVV	Mothed Diank	Clay Content					30
B108214	DVY	Method Blank	Moisture	2023/09/15	<0.30		%	20
B108214	DVY	RPD [BYR152-01]	Moisture	2023/09/15	0	0.0	%	20 75 125
B109604	PL	QC Standard	Total Organic Carbon (C)	2023/09/15		96	%	75 - 125
B109604	PL	Spiked Blank	Total Organic Carbon (C)	2023/09/15	40.0E0	100	%	80 - 120
B109604	PL	Method Blank	Total Organic Carbon (C)	2023/09/15	<0.050		%	25
B109604	PL	RPD [BYR143-01]	Total Organic Carbon (C)	2023/09/15	0.94	00	%	35
B111208	EBO	Matrix Spike [BYR150-01]	Soluble Chloride (CI)	2023/09/17		98	%	75 - 125
B111208	EBO	QC Standard	Soluble Chloride (CI)	2023/09/17		87	%	75 - 125
B111208	EBO	Spiked Blank	Soluble Chloride (CI)	2023/09/17	-10	99	%	80 - 120
B111208	EBO	Method Blank	Soluble Chloride (Cl)	2023/09/17	<10		mg/L	20
B111208	EBO	RPD [BYR150-01]	Soluble Chloride (Cl)	2023/09/17	NC	00	%	30
B111261	VSC	Matrix Spike [BYR150-01]	Soluble Calcium (Ca)	2023/09/17		98	%	75 - 125
			Soluble Magnesium (Mg)	2023/09/17		102	%	75 - 125
			Soluble Sodium (Na)	2023/09/17		99	%	75 - 125
D4442C4	\/CC	000	Soluble Potassium (K)	2023/09/17		100	%	75 - 125
B111261	VSC	QC Standard	Soluble Calcium (Ca)	2023/09/17		89	%	75 - 125
			Soluble Magnesium (Mg)	2023/09/17		92	%	75 - 125
			Soluble Sodium (Na)	2023/09/17		97	%	75 - 125
			Soluble Potassium (K)	2023/09/17		100	%	75 - 125
			Soluble Sulphate (SO4)	2023/09/17		88	%	75 - 125
B111261	VSC	Spiked Blank	Soluble Calcium (Ca)	2023/09/17		97	%	80 - 120
			Soluble Magnesium (Mg)	2023/09/17		102	%	80 - 120
			Soluble Sodium (Na)	2023/09/17		97	%	80 - 120
			Soluble Potassium (K)	2023/09/17		99	%	80 - 120
B111261	VSC	Method Blank	Soluble Calcium (Ca)	2023/09/17	<1.5		mg/L	
			Soluble Magnesium (Mg)	2023/09/17	<1.0		mg/L	
			Soluble Sodium (Na)	2023/09/17	<2.5		mg/L	
			Soluble Potassium (K)	2023/09/17	<1.3		mg/L	
		_	Soluble Sulphate (SO4)	2023/09/17	<5.0		mg/L	
B111261	VSC	RPD [BYR150-01]	Soluble Calcium (Ca)	2023/09/17	6.7		%	30
			Soluble Magnesium (Mg)	2023/09/17	3.6		%	30

Okane Consultants

Client Project #: 1002-228

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Soluble Sodium (Na)	2023/09/17	7.8		%	30
			Soluble Potassium (K)	2023/09/17	7.9		%	30
			Soluble Sulphate (SO4)	2023/09/17	10		%	30
B111288	EBO	QC Standard	Soluble Conductivity	2023/09/17		102	%	75 - 125
B111288	EBO	Spiked Blank	Soluble Conductivity	2023/09/17		101	%	90 - 110
B111288	EBO	Method Blank	Soluble Conductivity	2023/09/17	<0.020		dS/m	
B111288	EBO	RPD [BYR150-01]	Soluble Conductivity	2023/09/17	1.9		%	20
B128422	MPU	Matrix Spike [BYR150-01]	Available (NH4F) Phosphorus (P)	2023/09/28		124	%	75 - 125
B128422	MPU	Spiked Blank	Available (NH4F) Phosphorus (P)	2023/09/28		119	%	80 - 120
B128422	MPU	Method Blank	Available (NH4F) Phosphorus (P)	2023/09/28	<1.0		mg/kg	
B128422	MPU	RPD [BYR150-01]	Available (NH4F) Phosphorus (P)	2023/09/29	9.8		%	35
B133862	VSC	Matrix Spike [BYR150-01]	Available (NH4OAc) Potassium (K)	2023/10/02		107	%	75 - 125
B133862	VSC	Spiked Blank	Available (NH4OAc) Potassium (K)	2023/10/02		118	%	80 - 120
B133862	VSC	Method Blank	Available (NH4OAc) Potassium (K)	2023/10/02	<2.0		mg/kg	
B133862	VSC	RPD [BYR150-01]	Available (NH4OAc) Potassium (K)	2023/10/02	4.4		%	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: RAINY RIVER MINE - VEG TRIALS

Sampler Initials: SP

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Gita Pokhrel, Laboratory Supervisor

Sandy Yuan, M.Sc., QP, Scientific Specialist

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Manitoba Environmental laboratory operations.

For further information contact:

Scott Prodahl Reclamation and Revegetation Specialist sprodahl@okaneconsultants.com

M.A. O'Kane Consultants Inc.

Suite 1900, 736 6th Avenue SW Calgary, AB T2P 3T7 Canada

Telephone: (587) 583 5741 Web: www.okc-sk.com